87 resultados para common bean
Resumo:
The addition of AMP to the crystalline and homogeneous mung bean nucleotide pyrophosphatase [EC 3.6.1.9]altered its electrophoretic mobility. AMP was tightly bound to the enzyme and was not removed on passage through a column of Sephadex G-25 or on electrophoresis. The molecular weight of the native and AMP-modified enzymes were 65,000 and 136,000, respectively. The properties of the native enzyme such as the pH (9.4) and temperature (49 °C) optima, inhibition by EDTA, reversal of EDTA-inhibition by Zn2+ and Co2+, were not altered on dimerization by AMP. The AMP-modified enzyme had a linear time-course of reaction, unlike the native enzyme which exhibited a biphasic time-course of reaction. The AMP-modified enzyme was irreversibly denatured by urea. AMP concentrations larger than 100 μM inhibited linearly the activity of the AMP-modified enzyme. ADP and ATP inhibited the activity in a sigmoidal manner. Km and V of the native and AMP-modified enzymes were, 0.25 mImage and 0.58 mImage ; and 3.3 and 2.5, respectively.
Resumo:
One of the monoclonal antibodies raised against bovine beta-lactoglobulin reacted with human serum retinol binding protein. The finding that this monoclonal antibody also reacted with the serum retinol binding proteins isolated from other animals, suggested that this epitopic conformation is conserved among these proteins. Using ELISA and various synthetic peptides of defined sequence, we show in this paper that the epitope defined by this monoclonal antibody comprises of the highly conserved core sequence of DTDY present in beta-lactoglobulin and retinol binding proteins.
Resumo:
We report cloning of the DNA encoding winged bean basic agglutinin (WBA I). Using oligonucleotide primers corresponding to N- and C-termini of the mature lectin, the complete coding sequence for WBA I could be amplified from genomic DNA. DNA sequence determination by the chain termination method revealed the absence of any intervening sequences in the gene. The DNA deduced amino acid sequence of WBA I displayed some differences with its primary structure established previously by chemical means. Comparison of the sequence of WBA I with that of other legume lectins highlighted several interesting features, including the existence of the largest specificity determining loop which might account for its oligosaccharide-binding specificity and the presence of an additional N-glycosylation site. These data also throw some light on the relationship between the primary structure of the protein and its probable mode of dimerization.
Resumo:
An epitope scan analysis of the whole sequence of avidin and core streptavidin using polyclonal antibodies to these two antigens reveal the presence of multiple common epitopes in both the proteins. These antigenic determinants consist mostly of either identical or similar residues. The antibody recognition sites in both antigens are shown to be localized to homologous regions.
Resumo:
Vegetable oils are a potential source of base oils for biodegradable lubricants, with limited oxidative stability. This study focuses on the effect of long-term ageing and the influence of oxidation products on the boundary lubrication performance of coconut and soy bean oils, by subjecting them to accelerated ageing in a dark oven at elevated temperature. The samples were collected at regular intervals and analysed for the changes in viscosity, percentage of free fatty acid and peroxide number compared to fresh oil samples. The boundary lubrication properties of these samples were evaluated using a four-ball tester. Increased wear observed with aged oil samples was linked to the destruction of triglyceride structure and formation of peroxides. The difference in the wear properties of soy bean oil to coconut oil was accounted by its high content of unsaturated fatty acids and its susceptibility to undergo oxidation. It was concluded that the coconut oil can perform as a better lubricant and has got a better storage life compared to soy bean oil.
Resumo:
Understanding the molecular mechanisms of immunological memory assumes importance in vaccine design. We had earlier hypothesized a mechanism for the maintenance of immunological memory through the operation of a network of idiotypic and anti-idiotypic antibodies (Ab2). Peptides derived from an internal image carrying anti-idiotypic antibody are hypothesized to facilitate the perpetuation of antigen specific T cell memory through similarity in peptide-MHC binding as that of the antigenic peptide. In the present work, the existence of such peptidomimics of the antigen in the Ab2 variable region and their similarity of MHC-I binding was examined by bioinformatics approaches. The analysis employing three known viral antigens and one tumor-associated antigen shows that peptidomimics from Ab2 variable regions have structurally similar MHC-I binding patterns as compared to antigenic peptides, indicating a structural basis for memory perpetuation. (C)) 2007 Elsevier Inc. All rights reserved.
Resumo:
A three-level space phasor generation scheme with common mode elimination and with reduced power device count is proposed for an open end winding induction motor in this paper. The open end winding induction motor is fed by the three-level inverters from both sides. Each two level inverter is formed by cascading two two-level inverters. By sharing the bottom inverter for the two three-level inverters on either side, the power device count is reduced. The switching states with zero common mode voltage variation are selected for PWM switching so that there is no alternating common mode voltage in the pole voltages as well as in phase voltages. Only two isolated DC-links, with half the voltage rating of a conventional three-level neutral point clamped inverter, are needed for the proposed scheme.
Resumo:
The commercial acrylic fibre "Cashmilon" was partially hydrolyzed to convert a fraction of its nitrile (-CN) groups to carboxylic acid (-COOH) groups and then coated with polyethylenimine (PEI) resin and cross-linked with glutaraldehyde to produce a novel gel-coated fibrous sorbent with multiple functionalities of cationic, anionic and chelating types, and significantly faster sorption kinetics than bead-form sorbents. The sorption properties of the fibrous sorbent were measured using Zn(II) in aqueous solution as the sorbate to determine the effects of pH and the presence of common ions in the solution on the sorption capacity. The rate of sorption on the gel-coated fibre was measured in comparison with that on Amberlite IRA-68 weak-base resin beads, to demonstrate the marked difference between fibre and bead-form sorbents in their kinetic behaviour.
Resumo:
The winged bean (Psophocarpus tetragonolobus) agglutinin (total lectin) and its basic (WBA I) and acidic isoform (WBA II) were used to analyze capillaries in sections from human muscle. The microvessels were clearly labeled after incubation with the lectins in both normal muscle and in old muscles with age-related type II atrophy or muscle fiber grouping. Muscle fibers, nerves, and connective tissue remained unstained. The total lectin detected muscle capillaries from all blood group AB0 individuals. The isoform WBA I reacted only with blood vessels in blood group A and B individuals, while the blood vessels in blood group 0 individuals were demonstrated with WBA II. WBA I staining was inhibited by p-nitrophenyl α-galactopyranoside and N-acetylgalactosamine, whereas 2′-fucosyllactose and preincubation with an antibody against type-1 chain H abolished capillary staining with WBA II. The study demonstrates the usefulness of WBA as a marker of capillaries in human muscle.
Resumo:
The complete amino acid sequence of winged bean basic agglutinin (WBA I) was obtained by a combination of manual and gas-phase sequencing methods. Peptide fragments for sequence analyses were obtained by enzymatic cleavages using trypsin and Staphylococcus aureus V8 endoproteinase and by chemical cleavages using iodosobenzoic acid, hydroxylamine, and formic acid. COOH-terminal sequence analysis of WBA I and other peptides was performed using carboxypeptidase Y. The primary structure of WBA I was homologous to those of other legume lectins and more so to Erythrina corallodendron. Interestingly, the sequence shows remarkable identities in the regions involved in the association of the two monomers of E. corallodendron lectin. Other conserved regions are the double metal-binding site and residues contributing to the formation of the hydrophobic cavity and the carbohydrate-binding site. Chemical modification studies both in the presence and absence of N-acetylgalactosamine together with sequence analyses of tryptophan-containing tryptic peptides demonstrate that tryptophan 133 is involved in the binding of carbohydrate ligands by the lectin. The location of tryptophan 133 at the active center of WBA I for the first time subserves to explain a role for one of the most conserved residues in legume lectins.
Resumo:
The binding of winged bean basic agglutinin (WBA I) to 4-methylumbelliferyl (MeUmb) galactosides was examined by extrinsic fluorescence titration and stopped-flow spectrofluorimetry. Upon binding to WBA I, MeUmb alpha-galactosides show quenching in fluorescence intensity, decrease in UV absorbance with a concomitant blue shift, and decrease in fluorescence excited-state lifetimes. However, their beta-analogues show enhancement in fluorescence intensity, increase in UV absorbance with a red shift, and an increase in fluorescence excited-state lifetimes. This implies that the umbelliferyl groups of alpha- and beta-galactosides experience non-polar and polar microenvironments, respectively, upon binding to WBA I. Replacement of the anomeric hydroxyl group of galactose by 4-methylumbelliferyl moiety increases the affinity of resulting saccharides. Substitution of C-2 hydroxyl of galactose by an acetamido group leads to increased affinity due to a favorable entropy change. This suggests that acetamido group of MeUmb-alpha/beta-GalNAc binds to a relatively non-polar subsite of WBA I. Most interestingly, this substitution also reduces the association rate constants dramatically. Inspection of the activation parameters reveals that the enthalpy of activation is the limiting factor for the differences in the forward rate constants for these saccharides and the entropic contribution to the activation energy is small
Resumo:
The basic lectin from winged bean (Psophocarpus tetragonolobus) could be crystallized using polyethyleneglycol (PEG) 4000 (I), PEG 8000 (II) and 2-methylpentane-2,4-diol (MPD) (III) as precipitants. Crystal forms I and II grew in the presence of methyl-α-Image -galactopyranoside or N -acetylgalactosamine while III grew in the absence of sugar. The three forms have the same space group (P21212) and similar unit cell dimensions with two dimeric molecules in the asymmetric unit. The unit cell dimensions are a = 156·8 Å, b = 89·0 Å, c = 73·3 Å for I, a = 155·5 Å, b = 92·3 Å, c = 72·5 Å for II and a = 148·3 Å, b = 90·7 Å, c = 73·8 Å for III. The crystals, particularly those grown using PEG 8000, are suitable for high resolution X-ray analysis, which is in progress.
Resumo:
In order to identify the forces involved in the binding and to understand the mechanism involved, equilibrium and kinetic studies were performed on the binding of the winged bean acidic lectin to human erythrocytes. The magnitudes of delta S and delta H were positive and negative respectively, an observation differing markedly from the lectin-simple sugar interactions where delta S and delta H are generally negative. Analysis of the sign and magnitudes of these values indicate that ionic and hydrogen bonded interactions prevail over hydrophobic interactions resulting in net -ve delta H (-37.12 kJ.mol-1) and +ve delta S (14.4 J.mole-1 K-1 at 20 degrees C), thereby suggesting that this entropy driven reaction also reflects conformational changes in the lectin and/or the receptor. Presence of two kinds of receptors for WBA II on erythrocytes, as observed by equilibrium studies, is consistent with the biexponential dissociation rate constants (at 20 degrees C K1 = 1.67 x 10(-3) M-1 sec-1 and K2 = 11.1 x 10(-3) M-1 sec-1). These two rate constants differed by an order of magnitude accounting for the difference in the association constants of the two receptors of WBA II. However, the association process remains monoexponential suggesting no observable difference in the association rates of the lectin molecule with both the receptors, under the experimental conditions studied. The thermodynamic parameters calculated from kinetic data correlate well with those observed by equilibrium. A two-step binding mechanism is proposed based on the kinetic parameters for WBA II-receptor interaction
Resumo:
The thermodynamics of the binding of D-galactopyranoside (Gal), 2-acetamido-2-deoxygalactopyranoside (GalNAc), methyl-alpha-D-galactopyranoside, and methyl-beta-D-galactopyranoside to the basic agglutinin from winged bean (WBAI) in 0.02 M sodium phosphate and 0.15 M sodium chloride buffer have been investigated from 298.15 to 333.15 K by titration calorimetry and at the denaturation temperature by differential scanning calorimetry (DSC). WBAI is a dimer with two binding sites. The titration calorimetry yielded single-site binding constants ranging from 0.56 +/- 0.14 x 10(3) M-1 for Gal at 323.15 K to 7.2 +/- 0.5 x 10(3) M-1 for GalNAc at 298.15 K and binding enthalpies ranging from -28.0 +/- 2.0 kJ mol-1 for GalNAc at 298.15 K to -14.3 +/- 0.1 kJ mol-1 for methyl-beta-D-galactopyranoside at 322.65 K. The denaturation transition consisted of two overlapping peaks over the pH range 5.6-7.4. Fits of the differential scanning calorimetry data to a two-state transition model showed that the low temperature transition (341.6 +/- 0.4 K at pH 7.4) consisted of two domains unfolding as a single entity while the higher temperature transition (347.8 +/- 0.6 K at pH 7.4) is of the remaining WBAI dimer unfolding into two monomers. Both transitions shift to higher temperatures and higher calorimetric enthalpies with increase in added ligand concentration at pH 7.4. Analysis of the temperature increase as a function of added ligand concentration suggests that one ligand binds to the two domains unfolding at 341.6 +/- 0.6 K and one ligand binds to the domain unfolding at 347.8 +/- 0.6 K.
Resumo:
n acidic lectin (WBA II) was isolated to homogeneity from the crude seed extract of the winged bean (Psophocarpus tetragonolobus) by affinity chromatography on lactosylaminoethyl-Bio-Gel. Binding of WBA II to human erythrocytes of type-A, -B and -O blood groups showed the presence of 10(5) receptors/cell, with high association constants (10(6)-10(8) M-1). Competitive binding studies with blood-group-specific lectins reveal that WBA II binds to H- and T-antigenic determinants on human erythrocytes. Affinity-chromatographic studies using A-, B-, H- and T-antigenic determinants coupled to an insoluble matrix confirm the specificity of WBA II towards H- and T-antigenic determinants. Inhibition of the binding of WBA II by various sugars show that N-acetylgalactosamine and T-antigenic disaccharide (Thomsen-Friedenreich antigen, Gal beta 1-3GalNAc) are the most potent mono- and di-saccharide inhibitors respectively. In addition, inhibition of the binding of WBA II to erythrocytes by dog intestine H-fucolipid prove that the lectin binds to H-antigenic determinant.