29 resultados para claims separability


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation characteristics of stainless steel type AISI 3O4 under compression in the temperature range 20 degrees C to 600 degrees C and strain-rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At strain rates less than 5 s(-1), 304 stainless steel exhibits flow localization, whereas dynamic strain aging occurs at intermediate temperatures and below 0.5 s(-1). At room temperatures and strain rates less than 10 s(-1), martensite formation is observed. To avoid the preceding microstructural instabilities, cold and warm working should be carried out at strain rates greater than 5 s(-1). The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the preceding instability features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation characteristics of stainless steel type AISI 316L under compression in the temperature range 20 to 600 degrees C and strain rate range 0.001 to 100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. At temperatures lower than 100 degrees C and strain rates higher than 0.1 s(-1), 316L stainless steel exhibits flow localization whereas dynamic strain aging (DSA) occurs at intermediate temperatures and below 1 s(-1). To avoid the above flow instabilities, cold working should be carried out at strain rates less than 0.1 s(-1). Warm working of stainless steel type AISI 316L may be done in the temperature and strain rate regime of: 300 to 400 degrees C and 0.001 s(-1) 300 to 450 degrees C and 0.01 s(-1): 450 to 600 degrees C and 0.1 s(-1); 500 degrees C and 1 s(-1) since these regions are free from flow instabilities like DSA and flow localization. The continuum criterion, developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all the above instability features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The deformation characteristics of as-cast 304 stainless steel under compression in the temperature range 20-600 degrees C and strain rate range 0.001-100 s(-1) have been studied with a view to characterizing the flow instabilities occurring in the microstructure. Ar strain rates of less than 0.05 s(-1), as-cast 304 stainless steel exhibits flow localization in the temperature range 20-600 degrees C, whereas dynamic strain ageing occurs at intermediate temperatures and below 5 s(-1). At room temperatures and strain rates of less than 0.05 s(-1), martensite formation is observed. To avoid the above microstructural instabilities warm working should be carried out at strain rates greater than 10 s(-1) in the temperature range 400-600 degrees C and cold working could be done in the range of about 0.05-0.8 s(-1). The continuum criterion developed on the basis of the principles of maximum rate of entropy production and separability of the dissipation function, predicts accurately all of the above instability features. (C) 1997 Elsevier Science S.A.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explore a full sphere (2D axisymmetric) kinematic solar dynamo model based on the Babcock-Leighton idea that the poloidal field is generated in the surface layers from the decay of tilted bipolar solar active regions. This model incorporates the helioseismically deduced solar rotation profile and an algorithm for buoyancy motivated from simulations of flux tube dynamics. A prescribed deep meridional circulation plays an important role in the advection of magnetic flux. We specifically address the parity issue and show that – contrary to some recent claims – the Babcock-Leighton dynamo can reproduce solar-like dipolar parity if certain reasonable conditions are satisfied in the solar interior, the most important requirement being that the poloidal field of the two hemispheres be efficiently coupled across the equator.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Current standard security practices do not provide substantial assurance about information flow security: the end-to-end behavior of a computing system. Noninterference is the basic semantical condition used to account for information flow security. In the literature, there are many definitions of noninterference: Non-inference, Separability and so on. Mantel presented a framework of Basic Security Predicates (BSPs) for characterizing the definitions of noninterference in the literature. Model-checking these BSPs for finite state systems was shown to be decidable in [8]. In this paper, we show that verifying these BSPs for the more expressive system model of pushdown systems is undecidable. We also give an example of a simple security property which is undecidable even for finite-state systems: the property is a weak form of non-inference called WNI, which is not expressible in Mantel’s BSP framework.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents the design of the area optimized integer two dimensional discrete cosine transform (2-D DCT) used in H.264/AVC codecs. The 2-D DCT calculation is performed by utilizing the separability property, in such a way that 2-D DCT is divided into two 1-D DCT calculation that are joined through a common memory. Due to its area optimized approach, the design will find application in mobile devices. Verilog hardware description language (HDL) in cadence environment has been used for design, compilation, simulation and synthesis of transform block in 0.18 mu TSMC technology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We address the problem of pricing defaultable bonds in a Markov modulated market. Using Merton's structural approach we show that various types of defaultable bonds are combination of European type contingent claims. Thus pricing a defaultable bond is tantamount to pricing a contingent claim in a Markov modulated market. Since the market is incomplete, we use the method of quadratic hedging and minimal martingale measure to derive locally risk minimizing derivative prices, hedging strategies and the corresponding residual risks. The price of defaultable bonds are obtained as solutions to a system of PDEs with weak coupling subject to appropriate terminal and boundary conditions. We solve the system of PDEs numerically and carry out a numerical investigation for the defaultable bond prices. We compare their credit spreads with some of the existing models. We observe higher spreads in the Markov modulated market. We show how business cycles can be easily incorporated in the proposed framework. We demonstrate the impact on spreads of the inclusion of rare states that attempt to capture a tight liquidity situation. These states are characterized by low risk-free interest rate, high payout rate and high volatility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethnopharmacological relevance: Medicinal plants have played an important role in treating and preventing a variety of diseases throughout the world. Khampti tribal people living in the far-flung Lohit district of the Eastern Arunachal Himalaya, India still depend on medicinal plants and most of them have a general knowledge of medicinal plants which are used for treating a variety of ailments. This survey was undertaken in Lohit district in order to inventory the medicinal plants used in folk medicine to treat diabetes mellitus. Materials and methods: Field investigations were conducted in seventeen remote villages of Lohit district starting from April 2002 to May 2004 through interviews among 251 key informants who were selected randomly during our household survey. To elucidate community domains and determine differences in indigenous traditional knowledge of medicinal plants with anti-diabetic efficacy, we repeated our field survey starting from April 2008 to May 2010 with one hundred traditional healers locally called as ``Chau ya'' in Khampti of Lohit district. ``Chau ya'' traditional healers who know and use medicinal plants for treating diabetes mellitus were interviewed using a semi-structured questionnaire. Results: This study reports an ethnobotanical survey of medicinal plants in Lohit district of Arunachal Pradesh reputed for the treatment of diabetes mellitus. Forty-six plant species were identified in the study area to treat diabetes mellitus by the Khamptis ``Chau ya'' traditional healers. Comparative published literature survey analysis of this study with other ethnobotanical surveys of plants used traditionally in treating diabetes mellitus suggests that eleven plant species make claims of new reports on antidiabetic efficacy. These plant species are Begonia roxburghii, Calamus tenuis, Callicarpa arborea, Cuscuta reflexa, Dillenia indica, Diplazium esculentum, Lectuca gracilis, Millingtonia hortensis, Oxalis griffithii, Saccharum spontaneum, and Solanum viarum. Some of the plants reported in this study have an antidiabetic effect on rodent models but none have sufficient clinical evidence of effectiveness. Conclusions: The wide variety of medicinal plants that are used to treat diabetes mellitus in this area supports the importance of plants in the primary healthcare system of the rural people of Lohit district of Arunachal Pradesh. The finding of new plant uses in the current study reveals the importance of the documentation of such ethnobotanical knowledge. (C) 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical literature on solid mechanics claims existence of radial deformation due to torsion but there is hardly any literature on analytic solutions capturing this phenomenon. This paper tries to solve this problem in an asymptotic sense using the variational asymptotic method (VAM). The method makes no ad hoc assumptions and hence asymptotic correctness is assured. The VAM splits the 3D elasticity problem into two parts: A 1D problem along the length of the cylinder which gives the twist and a 2D cross-sectional problem which gives the radial deformation. This enables closed form solutions, even for some complex problems. Starting with a hollow cylinder, made up of orthotropic but transversely isotropic material, the 3D problem has been formulated and solved analytically despite the presence of geometric nonlinearity. The general results have been specialized for particularly useful cases, such as solid cylinders and/or cylinders with isotropic material. DOI: 10.1115/1.4006803]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The solar activity cycle is successfully modeled by the flux transport dynamo, in which the meridional circulation of the Sun plays an important role. Most of the kinematic dynamo simulations assume a one-cell structure of the meridional circulation within the convection zone, with the equatorward return flow at its bottom. In view of the recent claims that the return flow occurs at a much shallower depth, we explore whether a meridional circulation with such a shallow return flow can still retain the attractive features of the flux transport dynamo (such as a proper butterfly diagram, the proper phase relation between the toroidal and poloidal fields). We consider additional cells of the meridional circulation below the shallow return flow-both the case of multiple cells radially stacked above one another and the case of more complicated cell patterns. As long as there is an equatorward flow in low latitudes at the bottom of the convection zone, we find that the solar behavior is approximately reproduced. However, if there is either no flow or a poleward flow at the bottom of the convection zone, then we cannot reproduce solar behavior. On making the turbulent diffusivity low, we still find periodic behavior, although the period of the cycle becomes unrealistically large. In addition, with a low diffusivity, we do not get the observed correlation between the polar field at the sunspot minimum and the strength of the next cycle, which is reproduced when diffusivity is high. On introducing radially downward pumping, we get a more reasonable period and more solar-like behavior even with low diffusivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-phase DC/AC power electronic converters suffer from pulsating power at double the line frequency. The commonest practice to handle the issue is to provide a huge electrolytic capacitor for smoothening out the ripple. But, the electrolytic capacitors having short end of lifetimes limit the overall lifetime of the converter. Another way of handling the ripple power is by active power decoupling (APD) using the storage devices and a set of semiconductor switches. Here, a novel topology has been proposed implementing APD. The topology claims the benefit of 1) reduced stress on converter switches 2) using smaller capacitance value thus alleviating use of electrolytic capacitor in turn improving the lifetime of the converter. The circuit consists of a third leg, a storage capacitor and a storage inductor. The analysis and the simulation results are shown to prove the effectiveness of the topology.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We perform global linear stability analysis and idealized numerical simulations in global thermal balance to understand the condensation of cold gas from hot/virial atmospheres (coronae), in particular the intracluster medium (ICM). We pay particular attention to geometry (e.g. spherical versus plane-parallel) and the nature of the gravitational potential. Global linear analysis gives a similar value for the fastest growing thermal instability modes in spherical and Cartesian geometries. Simulations and observations suggest that cooling in haloes critically depends on the ratio of the cooling time to the free-fall time (t(cool)/t(ff)). Extended cold gas condenses out of the ICM only if this ratio is smaller than a threshold value close to 10. Previous works highlighted the difference between the nature of cold gas condensation in spherical and plane-parallel atmospheres; namely, cold gas condensation appeared easier in spherical atmospheres. This apparent difference due to geometry arises because the previous plane-parallel simulations focused on in situ condensation of multiphase gas but spherical simulations studied condensation anywhere in the box. Unlike previous claims, our non-linear simulations show that there are only minor differences in cold gas condensation, either in situ or anywhere, for different geometries. The amount of cold gas depends on the shape of tcool/tff; gas has more time to condense if gravitational acceleration decreases towards the centre. In our idealized plane-parallel simulations with heating balancing cooling in each layer, there can be significant mass/energy/momentum transfer across layers that can trigger condensation and drive tcool/tff far beyond the critical value close to 10.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The bilateral filter is a versatile non-linear filter that has found diverse applications in image processing, computer vision, computer graphics, and computational photography. A common form of the filter is the Gaussian bilateral filter in which both the spatial and range kernels are Gaussian. A direct implementation of this filter requires O(sigma(2)) operations per pixel, where sigma is the standard deviation of the spatial Gaussian. In this paper, we propose an accurate approximation algorithm that can cut down the computational complexity to O(1) per pixel for any arbitrary sigma (constant-time implementation). This is based on the observation that the range kernel operates via the translations of a fixed Gaussian over the range space, and that these translated Gaussians can be accurately approximated using the so-called Gauss-polynomials. The overall algorithm emerging from this approximation involves a series of spatial Gaussian filtering, which can be efficiently implemented (in parallel) using separability and recursion. We present some preliminary results to demonstrate that the proposed algorithm compares favorably with some of the existing fast algorithms in terms of speed and accuracy.