167 resultados para chaotic vibrations
Resumo:
The natural frequencies of a reservoir-foundation system are calculated by treating the foundation as a system of linear springs with inertia. The reservoir is treated as consisting of compressible liquid, and the influence of waves at the free surface is included. It is shown that the natural frequencies decrease monotonically as the depth of foundation participating in the motion increases. The influence of waves at the reservoir surface is negligible for the cases normally occurring in practice. It is also shown that the wavelength of motion along the reservoir has no influence on the frequencies when the foundation depth is large compared to the reservoir depth.
Resumo:
The normal coordinate treatments of thioacetamide and its seven isotopic molecules have been carried out using Urey-Bradley force constants refined by a least-squares procedure. The laser Raman spectrum of thioacetamide has also been recorded.
Resumo:
In-plane vibration modes of 1,2,5- and 1,3,4-oxa- and thia-diazoles, and 1,2,5-selenadiazole have been assigned on the basis of detailed normal coordinate analysis employing data on several deuterated species. In-plane vibration frequencies of two 1,2,3,4-thiatriazole derivatives have been calculated and compared with observed values.
Resumo:
Large amplitude oscillations of cantilevered beams of variable cross-section, with concentrated masses along the span, are studied in this paper. The governing non-linear ordinary differential equation is solved by an averaging technique to obtain approximate solutions. Stability boundaries of the response are also investigated.
Resumo:
A study of vibrations of multifiber composite shells is presented. Special attention is paid to the effect of composition of different fibers on the frequency spectrum of a freely vibrating cylindrical shell. The numerical results indicate clustering of frequency spectrum of a freely vibrating cylindrical composite shell as compared with the isotropic shell, and the spectrum varies considerably with the composition of the constituent materials.
Resumo:
We consider diffusively coupled map lattices with P neighbors (where P is arbitrary) and study the stability of the synchronized state. We show that there exists a critical lattice size beyond which the synchronized state is unstable. This generalizes earlier results for nearest neighbor coupling. We confirm the analytical results by performing numerical simulations on coupled map lattices with logistic map at each node. The above analysis is also extended to two-dimensional P-neighbor diffusively coupled map lattices.
Resumo:
The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The longwavelength lattice vibrations in potassium, rubidium and caesium azides have been calculated using Born's lattice dynamics.
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
The Urey-Bradley force constants for the in-plane vibrations of the boric acid molecule are calculated using the Wilson's F-G matrix method. They are as follows: KO-H=5·23, KB-O=4·94, HBOH=0·36, {Mathematical expression}, F00=0·68 and FBH=0·98 in units of 105 dynes/cm. Using the force constants, the frequencies are recalculated and the calculated values agree with the observed values satisfactorily. The in-plane vibrational frequencies of deuterated boric acid are also calculated and again satisfactory agreement with the observed values is found.
Resumo:
An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.
Resumo:
In this paper an exact three-dimensional analysis for free vibrations of a class of simply-supported viscoelastic rectangular plates is given. The characteristic equation defining the eigenvalues is of closed form. Some numerical results are presented for standard linear solids. Results from thin plate and Mindlin theories are also given for the purpose of comparison.
Resumo:
The dispersion relations, frequency distribution function and specific heat of zinc blende have been calculated using Houston's method on (1) A short range force (S. R.) model of the type employed in diamond by Smith and (2) A long range model assuming an effective charge Ze on the ions. Since the elastic constant data on ZnS are not in agreement with one another the following values were used in these calculations: {Mathematical expression}. As compared to the results on the S. R. model, the Coulomb force causes 1. A splitting of the optical branches at (000) and a larger dispersion of these branches; 2. A rise in the acoustic frequency branches the effect being predominant in a transverse acoustic branch along [110]; 3. A bridging of the gap of forbidden frequencies in the S. R. model; 4. A reduction of the moments of the frequency distribution function and 5. A flattening of the Θ- T curve. By plotting (Θ/Θ0) vs. T., the experimental data of Martin and Clusius and Harteck are found to be in perfect coincidence with the curve for the short range model. The values of the elastic constants deduced from the ratio Θ0 (Theor)/Θ0 (Expt) agree with those of Prince and Wooster. This is surprising as several lines of evidence indicate that the bond in zinc blende is partly covalent and partly ionic. The conclusion is inescapable that the effective charge in ZnS is a function of the wave vector {Mathematical expression}.
Resumo:
Infrared and Raman spectra of N,N-dimethylacetamide (DMA) are recorded and the normal vibrational analysis of the DMA skeleton as well as the entire molecule carried out employing the Urey-Bradley and modified Urey-Bradley force fields. Vibrational frequencies are assigned on the basis of the normal coordinate calculations and are compared with those of related molecules. Infrared spectra of metal complexes are examined to substantiate the band assignments.