72 resultados para caspase recruitment domain protein 15 gene
Resumo:
Genomic data of several organisms have revealed the presence of a vast repertoire of multi-domain proteins. The role played by individual domains in a multi-domain protein has a profound influence on the overall function of the protein. In the present analysis an attempt has been made to better understand the tethering preferences of domain families that occur in multi-domain proteins. The analysis has been carried out on an exhaustive dataset of 2 961 898 sequences of proteins from 930 organisms, where 741 274 proteins are comprised of at least two domain families. For every domain family, the number of other domain families with which it co-occurs within a protein in this dataset has been enumerated and is referred to as the tethering number of the domain family. It was found that, in the general dataset, the AAA ATPase family and the family of Ser/Thr kinases have the highest tethering numbers of 450 and 444 respectively. Further analysis reveals significant correlation between the number of members in a family and its tethering number. Positive correlation was also observed for the extent of a sequence and functional diversity within a family and the tethering numbers of domain families. Domain families that are present ubiquitously in diverse organisms tend to have large tethering numbers, while organism/kingdom-specific families have low tethering numbers. Thus, the analysis uncovers how domain families recombine and evolve to give rise to multi-domain proteins.
Resumo:
Since the time of Kirkwood, observed deviations in magnitude of the dielectric constant of aqueous protein solution from that of neat water (similar to 80) and slower decay of polarization have been subjects of enormous interest, controversy, and debate. Most of the common proteins have large permanent dipole moments (often more than 100 D) that can influence structure and dynamics of even distant water molecules, thereby affecting collective polarization fluctuation of the solution, which in turn can significantly alter solution's dielectric constant. Therefore, distance dependence of polarization fluctuation can provide important insight into the nature of biological water. We explore these aspects by studying aqueous solutions of four different proteins of different characteristics and varying sizes, chicken villin headpiece subdomain (HP-36), immunoglobulin binding domain protein G (GB1), hen-egg white lysozyme (LYS), and Myoglobin (MYO). We simulate fairly large systems consisting of single protein molecule and 20000-30000 water molecules (varied according to the protein size), providing a concentration in the range of similar to 2-3 mM. We find that the calculated dielectric constant of the system shows a noticeable increment in all the cases compared to that of neat water. Total dipole moment auto time correlation function of water < dM(W) (0)delta M-W (t) > is found to be sensitive to the nature of the protein. Surprisingly, dipole moment of the protein and total dipole moment of the water molecules are found to be only weakly coupled. Shellwise decomposition of water molecules around protein reveals higher density of first layer compared to the succeeding ones. We also calculate heuristic effective dielectric constant of successive layers and find that the layer adjacent to protein has much lower value (similar to 50). However, progressive layers exhibit successive increment of dielectric constant, finally reaching a value close to that of bulk 4-5 layers away. We also calculate shellwise orientational correlation function and tetrahedral order parameter to understand the local dynamics and structural re-arrangement of water. Theoretical analysis providing simple method for calculation of shellwise local dielectric constant and implication of these findings are elaborately discussed in the present work. (C) 2014 AIP Publishing LLC.
Resumo:
We performed Gaussian network model based normal mode analysis of 3-dimensional structures of multiple active and inactive forms of protein kinases. In 14 different kinases, a more number of residues (1095) show higher structural fluctuations in inactive states than those in active states (525), suggesting that, in general, mobility of inactive states is higher than active states. This statistically significant difference is consistent with higher crystallographic B-factors and conformational energies for inactive than active states, suggesting lower stability of inactive forms. Only a small number of inactive conformations with the DFG motif in the ``in'' state were found to have fluctuation magnitudes comparable to the active conformation. Therefore our study reports for the first time, intrinsic higher structural fluctuation for almost all inactive conformations compared to the active forms. Regions with higher fluctuations in the inactive states are often localized to the aC-helix, aG-helix and activation loop which are involved in the regulation and/or in structural transitions between active and inactive states. Further analysis of 476 kinase structures involved in interactions with another domain/protein showed that many of the regions with higher inactive-state fluctuation correspond to contact interfaces. We also performed extensive GNM analysis of (i) insulin receptor kinase bound to another protein and (ii) holo and apo forms of active and inactive conformations followed by multi-factor analysis of variance. We conclude that binding of small molecules or other domains/proteins reduce the extent of fluctuation irrespective of active or inactive forms. Finally, we show that the perceived fluctuations serve as a useful input to predict the functional state of a kinase.
Resumo:
Huntington's disease (HD) is an autosomal dominant disorder of central nervous system caused by expansion of CAG repeats in exon1 of the huntingtin gene (Htt). Among various dysfunctions originated from the mutation in Htt gene, transcriptional deregulation has been considered to be one of the most important abnormalities. Large numbers of investigations identified altered expressions of genes in brains of HD patients and many models of HD. In this study we employed 2D SDS-PAGE/MALDI-MS coupled with 2D-DIGE and real-time PCR experiments of an array of genes focused to HD pathway to determine altered protein and gene expressions in STHdh(Q111)/Hdh(Q111) cells, a cell model of HD and compared with STHdh(Q7)/Hdh(Q7) cells, its wild type counterpart. We annotated 76 proteins from these cells and observed differential expressions of 31 proteins (by 2D-DIGE) involved in processes like unfolded protein binding, negative regulation of neuron apoptosis, response to superoxides etc. Our PCR array experiments identified altered expressions of 47 genes. Altogether significant alteration of 77 genes/proteins could be identified in this HD cell line with potential relevance to HD biology. Biological significance: In this study we intended to find out differential proteomic and genomic profiles in HD condition. We used the STHdh cells, a cellular model for HD and control. These are mouse striatal neuronal cell lines harboring 7 and 111 knock -in CAG repeats in their two alleles. The 111Q containing cell line (STHdh(Q111)/Hdh(Q111)) mimics diseased condition, whereas the 7Q containing ones (STHdh(Q7)/Hdh(Q7)), serves as the proper control cell line. Proteomic experiments were performed earlier to obtain differential expressions of proteins in R6/2 mice models, Hdh(Q) knock -in mice and in plasma and CSF from HD patients. However, no earlier report on proteomic alterations in these two HD cell lines and control was available in literature. It was, therefore, an important objective to find out differential expressions of proteins in these two cell lines. In this study, we annotated 76 proteins from STHdh(Q7)/Hdh(Q7) and STHdh(Q111)/Hdh(Q111) cells using 2D-gel/mass spectrometry. Next, by performing 2D-DIGE, we observed differential expressions of 31 proteins (16 upregulated and 15 downregulated) between these two cell lines. We also performed customized qRT-PCR array focused to HD pathway and found differential expressions of 47 genes (8 gene exptessions increased and 39 genes were decreased significantly). A total of 77 genes/proteins (Htt downregulated in both the studies) were found to be significantly altered from both the experimental paradigms. We validated the differential expressions of Vim, Hypk, Ran, Dstn, Hspa5 and Sod2 either by qRT-PCR or Western blot analysis or both. Out of these 77, similar trends in alteration of 19 out of 31 and 38 out of 47 proteins/genes were reported in earlier studies. Thus our study confirmed earlier observations on differential gene/protein expressions in HD and are really useful. Additionally, we observed differential expression of some novel genes/proteins. One of this was Hypk, a Htt-interacting chaperone protein with the ability to solubilize mHtt aggregated structures in cell lines. We propose that downregulation of Hypk in STHdh-Qm (Q111)/Hdh(Q111) has a causal effect towards HD pathogenesis. Thus the novel findings from our study need further research and might be helpful to understand the molecular mechanism behind HD pathogenesis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
17 independent crystal structures of family I uracil-DNA glycosylase from Mycobacterium tuberculosis (MtUng) and its complexes with uracil and its derivatives, distributed among five distinct crystal forms, have been determined. Thermodynamic parameters of binding in the complexes have been measured using isothermal titration calorimetry. The two-domain protein exhibits open and closed conformations, suggesting that the closure of the domain on DNA binding involves conformational selection. Segmental mobility in the enzyme molecule is confined to a 32-residue stretch which plays a major role in DNA binding. Uracil and its derivatives can bind to the protein in two possible orientations. Only one of them is possible when there is a bulky substituent at the 50 position. The crystal structures of the complexes provide a reasonable rationale for the observed thermodynamic parameters. In addition to providing fresh insights into the structure, plasticity and interactions of the protein molecule, the results of the present investigation provide a platform for structure-based inhibitor design.
Resumo:
Autosomal recessive primary microcephaly (MCPH) is a rare neurodevelopmental disorder characterized by a pronounced reduction of brain volume and intellectual disability. A current model for the microcephaly phenotype invokes a stem cell proliferation and differentiation defect, which has moved the disease into the spotlight of stem cell biology and neurodevelopmental science. Homozygous mutations of the Cyclin-dependent kinase-5 regulatory subunit-associated protein 2 gene CDK5RAP2 are one genetic cause of MCPH. To further characterize the pathomechanism underlying MCPH, we generated a conditional Cdk5rap2 LoxP/hCMV Cre mutant mouse. Further analysis, initiated on account of a lack of a microcephaly phenotype in these mutant mice, revealed the presence of previously unknown splice variants of the Cdk5rap2 gene that are at least in part accountable for the lack of microcephaly in the mice.
Resumo:
The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the beta transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the beta transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between Prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is the N terminal region of the protein.
Resumo:
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA ( rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Resumo:
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules,naiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The mutL gene of Neisseria gonorrhoeae has been cloned and the gene product purified. We have found that the homodimeric N. gonorrhoeae MutL (NgoL) protein displays an endonuclease activity that incises covalently closed circular DNA in the presence of Mn2+, Mg2+ or Ca2+ ions, unlike human MutL alpha which shows endonuclease activity only in the presence of Mn2+. We report in the present paper that the C-terminal domain of N. gonorrhoeae MutL (NgoL-CTD) consisting of amino acids 460-658 exhibits Mn2+-dependent endonuclease activity. Sedimentation velocity, sedimentation equilibrium and dynamic light scattering experiments show NgoL-CTD to be a dimer. The probable endonucleolytic active site is localized to a metal-binding motif, DMHAX(2)EX(4)E, and the nicking endonuclease activity is dependent on the integrity of this motif. By in vitro comparison of wild-type and it mutant NgoL-CTD protein, we show that the latter protein exhibits highly reduced endonuclease activity. We therefore suggest that the mode of excision initiation in DNA mismatch repair may be different in organisms that lack MutH protein, but have MutL proteins that harbour the D[M/Q]HAX(2)EX(4)E motif.
Resumo:
Background: Protein phosphorylation is a generic way to regulate signal transduction pathways in all kingdoms of life. In many organisms, it is achieved by the large family of Ser/Thr/Tyr protein kinases which are traditionally classified into groups and subfamilies on the basis of the amino acid sequence of their catalytic domains. Many protein kinases are multidomain in nature but the diversity of the accessory domains and their organization are usually not taken into account while classifying kinases into groups or subfamilies. Methodology: Here, we present an approach which considers amino acid sequences of complete gene products, in order to suggest refinements in sets of pre-classified sequences. The strategy is based on alignment-free similarity scores and iterative Area Under the Curve (AUC) computation. Similarity scores are computed by detecting common patterns between two sequences and scoring them using a substitution matrix, with a consistent normalization scheme. This allows us to handle full-length sequences, and implicitly takes into account domain diversity and domain shuffling. We quantitatively validate our approach on a subset of 212 human protein kinases. We then employ it on the complete repertoire of human protein kinases and suggest few qualitative refinements in the subfamily assignment stored in the KinG database, which is based on catalytic domains only. Based on our new measure, we delineate 37 cases of potential hybrid kinases: sequences for which classical classification based entirely on catalytic domains is inconsistent with the full-length similarity scores computed here, which implicitly consider multi-domain nature and regions outside the catalytic kinase domain. We also provide some examples of hybrid kinases of the protozoan parasite Entamoeba histolytica. Conclusions: The implicit consideration of multi-domain architectures is a valuable inclusion to complement other classification schemes. The proposed algorithm may also be employed to classify other families of enzymes with multidomain architecture.
Resumo:
beta protein, a key component of Red-pathway of phage lambda is necessary for its growth and general genetic recombination in recombination-deficient mutants of Escherichia coli. To facilitate studies on structure-function relationships, we overexpressed beta protein and purified it to homogeneity. A chemical cross-linking reagent, glutaraldehyde, was used to stabilize the physical association of beta protein in solution. A 67-kDa band, corresponding to homodimer, was identified after separation by SDS-polyacrylamide gel electrophoresis. Stoichiometric measurements indicated a site-size of 1 monomer of beta protein/5 nucleotide residues. Electrophoretic gel mobility shift assays suggested that beta protein formed stable nucleoprotein complexes with 36-mer, but not with 27- or 17-mer DNA. Interestingly, the interaction of beta protein with DNA and the stability of nucleoprotein complexes was dependent on the presence of MgCl2, and the binding was abolished by 250 mM NaCl. The K-d of beta protein binding to 36-mer DNA was on the order of 1.8 x 10(-6) M. Photochemical cross-linking of native beta protein or its fragments, generated by chymotrypsin, to 36-mer DNA was performed to identify its DNA-binding domain. Characterization of the cross-linked peptide disclosed that amino acids required for DNA-binding specificity resided within a 20-kDa peptide at the N-terminal end. These findings provide a basis for further understanding oi the structure and function of beta protein.
Resumo:
Background: Phosphorylation by protein kinases is central to cellular signal transduction. Abnormal functioning of kinases has been implicated in developmental disorders and malignancies. Their activity is regulated by second messengers and by the binding of associated domains, which are also influential in translocating the catalytic component to their substrate sites, in mediating interaction with other proteins and carrying out their biological roles. Results: Using sensitive profile-search methods and manual analysis, the human genome has been surveyed for protein kinases. A set of 448 sequences, which show significant similarity to protein kinases and contain the critical residues essential for kinase function, have been selected for an analysis of domain combinations after classifying the kinase domains into subfamilies. The unusual domain combinations in particular kinases suggest their involvement in ubiquitination pathways and alternative modes of regulation for mitogen-activated protein kinase kinases (MAPKKs) and cyclin-dependent kinase (CDK)-like kinases. Previously unexplored kinases have been implicated in osteoblast differentiation and embryonic development on the basis of homology with kinases of known functions from other organisms. Kinases potentially unique to vertebrates are involved in highly evolved processes such as apoptosis, protein translation and tyrosine kinase signaling. In addition to coevolution with the kinase domain, duplication and recruitment of non-catalytic domains is apparent in signaling domains such as the PH, DAG-PE, SH2 and SH3 domains. Conclusions: Expansion of the functional repertoire and possible existence of alternative modes of regulation of certain kinases is suggested by their uncommon domain combinations. Experimental verification of the predicted implications of these kinases could enhance our understanding of their biological roles.
Resumo:
Tobacco streak virus (TSV), a member of the genus Ilarvirus (family Bromoviridae), has a tripartite genome and forms quasi-isometric virions. All three viral capsids, encapsidating RNA 1, RNA 2 or RNA 3 and subgenomic RNA 4, are constituted of a single species of coat protein (CP). Formation of virus-like particles (VLPs) could be observed when the TSV CP gene was cloned and the recombinant CP (rCP) was expressed in E. coli. TSV VLPs were found to be stabilized by Zn2+ ions and could be disassembled in the presence of 500 mM CaCl2. Mutational analysis corroborated previous studies that showed that an N-terminal arginine-rich motif was crucial for RNA binding; however, the results presented here demonstrate that the presence of RNA is not a prerequisite for assembly of TSV VLPs. Instead, the N-terminal region containing the zinc finger domain preceding the arginine-rich motif is essential for assembly of these VLPs.
Resumo:
Background: Disulphide bridges are well known to play key roles in stability, folding and functions of proteins. Introduction or deletion of disulphides by site-directed mutagenesis have produced varying effects on stability and folding depending upon the protein and location of disulphide in the 3-D structure. Given the lack of complete understanding it is worthwhile to learn from an analysis of extent of conservation of disulphides in homologous proteins. We have also addressed the question of what structural interactions replaces a disulphide in a homologue in another homologue. Results: Using a dataset involving 34,752 pairwise comparisons of homologous protein domains corresponding to 300 protein domain families of known 3-D structures, we provide a comprehensive analysis of extent of conservation of disulphide bridges and their structural features. We report that only 54% of all the disulphide bonds compared between the homologous pairs are conserved, even if, a small fraction of the non-conserved disulphides do include cytoplasmic proteins. Also, only about one fourth of the distinct disulphides are conserved in all the members in protein families. We note that while conservation of disulphide is common in many families, disulphide bond mutations are quite prevalent. Interestingly, we note that there is no clear relationship between sequence identity between two homologous proteins and disulphide bond conservation. Our analysis on structural features at the sites where cysteines forming disulphide in one homologue are replaced by non-Cys residues show that the elimination of a disulphide in a homologue need not always result in stabilizing interactions between equivalent residues. Conclusion: We observe that in the homologous proteins, disulphide bonds are conserved only to a modest extent. Very interestingly, we note that extent of conservation of disulphide in homologous proteins is unrelated to the overall sequence identity between homologues. The non-conserved disulphides are often associated with variable structural features that were recruited to be associated with differentiation or specialisation of protein function.