174 resultados para breeding activity
Resumo:
The role of interaction between Asn259 (catalytic domain) with Gln821 (C-terminal domain) in PeptidaseN was investigated. The k(cat) of PeptidaseN containing Asn259Asp or Gln821Glu is enhanced whereas it is suppressed in Asn259AspGln821Glu. Structural analysis shows this interaction to change the relative disposition of active site residues, which modulates catalytic activity.
Resumo:
Broad-spectrum antibiotics with heterocyclic side chains strongly inhibit peroxidase-catalyzed iodination in the presence of metallo--lactamase. This suggests that antibiotic resistance due to hydrolysis of the -lactam ring in antibiotics would have negative effects on thyroid activity.
Resumo:
One of the unexplored, yet important aspects of the biology of acyl carrier proteins (ACPs) is the self-acylation and malonyl transferase activities dedicated to ACPs in polyketide synthesis. Our studies demonstrate the existence of malonyl transferase activity in ACPs involved in type II fatty acid biosynthesis from Plasmodium falciparum and Escherichia coli. We also show that the catalytic malonyl transferase activity is intrinsic to an individual ACP. Mutational analysis implicates an arginine/lysine in loop II and an arginine/glutamine in helix III as the catalytic residues for transferase function. The hydrogen bonding properties of these residues appears to be indispensable for the transferase reaction. Complementation of fabD(Ts) E. coli highlights the putative physiological role of this process. Our studies thus shed light on a key aspect of ACP biology and provide insights into the mechanism involved therein.
Resumo:
This study investigates the mechanism of action of transition metal chromites on the decomposition of ammonium perchlorate.
Resumo:
The ability of various synthetic peptide analogs of. Formyl-Met-Leu-Phe to induce chemotaxis in bull sperm is compared using an inverted capillary assay. The formyl group is essential for chemotactic activity and corresponding t-butyloxycarbonyl tripeptides are inactive. Sequence analogs, Formyl-Met-Phe-Leu, Formyl-Leu-Met-Phe and Formyl-Leu-Phe-Met are active. Replacement of Met and Leu by Pro does not diminish activity. Formyl-Met-Leu-Phe-NH2 is active suggesting that electrostatic interactions involving the carboxyl group may be unimportant in receptor interactions. The studies establish the importance of an amino terminal formyl group and a sequence of at least three hydrophobic residues, for inducing sperm chemotaxis.
Resumo:
Three oxo-bridged diiron(III) complexes of L-histidine and heterocyclic bases [Fe-2(mu-O)(L-his)(2)(B)(2)](ClO4)(2) (1-3), where B is 2,2'-bipyridine (bpy),1,10-phenanthroline (phen), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq), were prepared and characterized. The bpy complex 1 was structurally characterized by X-ray crystallography. The molecular structure showed a {Fe-2(mu-O)} core in which iron(III) in a FeN4O2 coordination is bound to tridentate monoanionic L-histidine and bidentate bpy ligands. The Fe center dot center dot center dot Fe distance is similar to 3.5 angstrom. The Fe-O-Fe unit is essentially linear, giving a bond angle of similar to 172 degrees. The complexes showed irreversible cyclic voltammetric cathodic response near -0.1 V vs. SCE in H2O-0.1 M KCl. The binuclear units displayed antiferromagnetic interaction between two high-spin (S = 5/2) iron(III) centers giving a -J value of -110 cm(-1). The complexes showed good DNA binding propensity giving a binding constant value of similar to 10(5) M-1. Isothermal titration calorimetric data indicated single binding mode to the DNA. The binding was found to be driven by negative free energy change and enthalpy. The dpq complex 3 showed oxidative double-strand DNA cleavage on exposure to UV-A and visible light. The phen complex 2 displayed single-strand photocleavage of DNA. The DNA double-strand breaks were rationalized from theoretical molecular docking calculations. Mechanistic investigations showed formation of hydroxyl radicals as the reactive species through photodecarboxylation of the L-histidine ligand. The complexes exhibited good binding propensity to bovine serum albumin (BSA) protein in Tris-HCl/NaCl buffer medium. The dpq complex 3 showed UV-A light-induced site-specific oxidative BSA cleavage forming fragments of similar to 45 kDa and similar to 20 kDa molecular weights via SOH pathway.
Resumo:
A series of secondary and tertiary amide-substituted diselenides were synthesized and studied for their GPx-like antioxidant activities using H2O2 Cum-OOH, and tBuOOH as substrates and PhSH as thiol co-substrate.The effect of substitution at the free -NH group of the amide moiety in the sec-amide-based diselenides on GPx activity was analyzed by detailed experimental and theoretical methods. It is observed that substitution at the free -NH group significantly enhances the GPx-like activities of the sec-amide-based diselenides, mainly by reducing the Se center dot center dot center dot O nonbonded interactions. The reduction in strength of the Se center dot center dot center dot O interaction upon introduction of N,N-dialkyl substituents not only prevents the undesired thiol exchange reactions, but also reduces the stability of selenenyl sulfide intermediates. This leads to a facile disproportionation of the selenenyl sulfide to the corresponding diselenide, which enhances the catalytic activity. The mechanistic investigations indicate that the reactivity of diselenides having sec-or tert-amide moieties with PhSH is extremely slow; indicating that the first step of the catalytic cycle involves the reaction between the diselenides and peroxide to produce the corresponding selenenic and seleninic acids.
Resumo:
Ultrafine powders of SrTiO3 are prepared at 100–150°C by the hydrothermal method, starting from TiO2·xH2O gel and Sr(OH)2 and H2O-isopropanol mixed solvent as the medium, The X-ray diffractograms of the powder show line broadening. The minimum crystallite size obtained ranges from 5 to 20nm with 20% H2O-80% C3H7OH as the reaction medium, as estimated from X-ray half-peak widths and TEM studies. The electron diffraction results indicate high concentration of lattice defects in these crystallites. The optical spectra of the particle suspensions in water show that the absorption around the band gap is considerably broadened, together with the appearance of maxima in the far ultraviolet. Aqueous suspensions of SrTiO3 powders, as such, do not produce H2 or O2 on UV irradiation. After coating with rhodium, H2 and O2 are evolved on illumination. However, the turn over number of O2 is lower than the stoichiometrically expected values from the corresponding values of H2. No correlation of the photocatalytic activity with surface area is observed. The activity of Rh-SrTiO3 slowly deteriorates with extended period of irradiation.
Resumo:
Ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina was evaluated for antiovulatory activity in adult rats. The ethanol extract at the doses 200 and 400mg/kg body weight (orally) affected the normal estrous cycle showing a significant increase in estrus and metestrus phases and decrease in diestrus and proestrus phases. The extract also significantly reduced the number of healthy follicles (Class I-Class VI) and corpora lutea and increased the number of regressing follicles (Stage IA, Stage IB, Stage IIA, and Stage IIB). The protein and glycogen content in the ovaries were significantly reduced in treated rats. The cholesterol level was significantly increased, whereas, the enzyme activities like 3b-HSD and 17b-HSD were significantly inhibited in the ovary of treated rats. Serum FSH and LH levels were significantly reduced in the treated groups were measured by RIA. In acute toxicity test, neither mortality nor change in the behavior or any other physiological activities in mice were observed in the treated groups. In chronic toxicity studies, no mortality was recorded and there were no significant differences in the body and organ weights were observed between controls and treated rats. Hematological analysis showed no significant differences in any of the parameters examined (RBC, WBC count and Hemoglobin estimation). These observations showed the antiovulatory activity of ethanol extract of whole plant of Trichosanthes cucumerina L. var. cucumerina in female albino rats.
Resumo:
Non-stoichiometric substituted cerium vanadates, MxCe1-xVO4 (M = Li, Ca and Fe), were synthesized by solid-state reactions. The crystal structure was analyzed by powder X-ray diffraction and it exhibits a tetragonal zircon Structure, crystallizing in the space group I4(1)/amd with a = 7.3733(4) and c = 6.4909(4) angstrom and Z = 4. Particle sizes were in the range of 600-800 nm, as observed by scanning electron microscopy. The thermal analysis of the compounds showed phase stability up to 1100 degrees C. The UV diffuse reflectance spectra indicated that the compounds have band gaps in the range of 2.6-2.9 eV. The photocatalytic activity of these Compounds was investigated for the first time for the degradation of different dyes, and organics, the oxidation of cyclohexane and the hydroxylation of benzene. The degradation of dyes was modeled using the Langmuir-Hinshelwood kinetics, while the oxidation of cyclohexane and hydroxylation of benzene were modeled using a free radical mechanism and a series reaction mechanism, respectively.
Resumo:
Analyses of rocket data at mid- and high-latitude locations over the American Continent show a solar activity-dependent mesospheric heating effect in the 60 to 90 km altitude region. A study of the altitude dependence of the effect shows that the heating and associated processes propagating downwards through the mesosphere do not cause discernible effects, below the 50 to 60 km layer. At Thumba, a significant short-term heating effect attributable to varying solar ultraviolet fluxes causing variable heating of atmospheric ozone is observed. This effect does not seem to propagate downwards into the upper stratosphere.
Resumo:
Cinnamate is the product of phenylalanine ammonialyase (PAL). This compound, a precursor of phenolics in plants, has been shown to be phytotoxic. Cinnamate inhibits PAL activity in cucumber seedlings. DL-phenylalanine has the same effect on the enzyme but does not affect growth. Actinomycin D and cycloheximide are phytotoxic and inhibit PAL. Production of a double-peg has been noticed in the seedlings, grown in the presence of actinomycin D. Light stimulates PAL activity in the seedling.
Resumo:
Sheep liver 5,10-methylenetetrahydrofolate reductase was subjected to specific chemical modification with phenylglyoxal, diethyl pyrocarbonate and N-bromosuccinimide. The second-order rate constants for inactivation were calculated to be 54 M-1 X min-1, 103 M-1 X min-1 and 154 M-1 X min-1 respectively. This inactivation could be prevented by incubation with substrates or products, suggesting that the residues modified, namely arginine, histidine and tryptophan, are essential for enzyme activity.
Resumo:
Among the various amines administered to excisedCucumis sativus cotyledons in short-term organ culture, agmatine (AGM) inhibited arginine decarboxylase (ADC) activity to around 50%, and putrescine was the most potent entity in this regard. Homoarginine (HARG) dramatically stimulated (3- to 4-fold) the enzyme activity. Both AGM inhibition and HARG stimulation of ADC were transient, the maximum response being elicited at 12 h of culture. Mixing experiments ruled out involvement of a macromolecular effector in the observed modulation of ADC. HARG-stimulated ADC activity was completely abolished by cycloheximide, whereas AGM-mediated inhibition was unaffected. Half-life of the enzyme did not alter on treatment with either HARG or AGM. The observed alterations in ADC activity are accompanied by change in Km of the enzyme. HARG-stimulated ADC activity is additive to that induced by benzyladenine (BA) whereas in presence of KCl, HARG failed to enhance ADC activity, thus demonstrating the overriding influence of K+ on amine metabolism.
Resumo:
The active site of triosephosphate isomerase (TIM, EC: 5.3.1.1), a dimeric enzyme, lies very close to the subunit interface. Attempts to engineer monomeric enzymes have yielded well-folded proteins with dramatically reduced activity. The role of dimer interface residues in the stability and activity of the Plasmodium falciparum enzyme, PfTIM, has been probed by analysis of mutational effects at residue 74. The PfTIM triple mutant W11F/W168F/Y74W (Y74W*) has been shown to dissociate at low protein concentrations, and exhibits considerably reduced stability in the presence of denaturants, urea and guanidinium chloride. The Y74W* mutant exhibits concentration-dependent activity, with an approximately 22-fold enhancement of kcat over a concentration range of 2.5–40 μm, suggesting that dimerization is obligatory for enzyme activity. The Y74W* mutant shows an approximately 20-fold reduction in activity compared to the control enzyme (PfTIM WT*, W11F/W168F). Careful inspection of the available crystal structures of the enzyme, together with 412 unique protein sequences, revealed the importance of conserved residues in the vicinity of the active site that serve to position the functional K12 residue. The network of key interactions spans the interacting subunits. The Y74W* mutation can perturb orientations of the active site residues, due to steric clashes with proximal aromatic residues in PfTIM. The available crystal structures of the enzyme from Giardia lamblia, which contains a Trp residue at the structurally equivalent position, establishes the need for complementary mutations and maintenance of weak interactions in order to accommodate the bulky side chain and preserve active site integrity.