18 resultados para beat gesture
Resumo:
The clever designs of natural transducers are a great source of inspiration for man-made systems. At small length scales, there are many transducers in nature that we are now beginning to understand and learn from. Here, we present an example of such a transducer that is used by field crickets to produce their characteristic song. This transducer uses two distinct components-a file of discrete teeth and a plectrum that engages intermittently to produce a series of impulses forming the loading, and an approximately triangular membrane, called the harp, that acts as a resonator and vibrates in response to the impulse-train loading. The file-and-plectrum act as a frequency multiplier taking the low wing beat frequency as the input and converting it into an impulse-train of sufficiently high frequency close to the resonant frequency of the harp. The forced vibration response results in beats producing the characteristic sound of the cricket song. With careful measurements of the harp geometry and experimental measurements of its mechanical properties (Young's modulus determined from nanoindentation tests), we construct a finite element (FE) model of the harp and carry out modal analysis to determine its natural frequency. We fine tune the model with appropriate elastic boundary conditions to match the natural frequency of the harp of a particular species-Gryllus bimaculatus. We model impulsive loading based on a loading scheme reported in literature and predict the transient response of the harp. We show that the harp indeed produces beats and its frequency content matches closely that of the recorded song. Subsequently, we use our FE model to show that the natural design is quite robust to perturbations in the file. The characteristic song frequency produced is unaffected by variations in the spacing of file-teeth and even by larger gaps. Based on the understanding of how this natural transducer works, one can design and fabricate efficient microscale acoustic devices such as microelectromechanical systems (MEMS) loudspeakers.
Resumo:
Karnataka state in southern India supports a globally significant and the country's largest population of the Asian elephant Elephas maximus. A reliable map of Asian elephant distribution and measures of spatial variation in their abundance, both vital needs for conservation and management action, are unavailable not only in Karnataka, but across its global range. Here, we use various data gathered between 2000 and 2015 to map the distribution of elephants in Karnataka at the scale of the smallest forest management unit, the `beat', while also presenting data on elephant dung density for a subset of `elephant beats.' Elephants occurred in 972 out of 2855 forest beats of Karnataka. Sixty percent of these 972 beats and 55% of the forest habitat lay outside notified protected areas (PM), and included lands designated for agricultural production and human dwelling. While median elephant dung density inside protected areas was nearly thrice as much as outside, elephants routinely occurred in or used habitats outside PM where human density, land fraction under cultivation, and the interface between human-dominated areas and forests were greater. Based on our data, it is clear that India's framework for elephant conservation which legally protects the species wherever it occurs, but protects only some of its habitats while being appropriate in furthering their conservation within PM, seriously falters in situations where elephants reside in and/or seasonally use areas outside PAs. Attempts to further elephant conservation in production and dwelling areas have extracted high costs in human, elephant, material and monetary terms in Karnataka. In such settings, conservation planning exercises are necessary to determine where the needs of elephants or humans must take priority over the other, and to achieve that in a manner that is based not only on reliable scientific data but also on a process of public reasoning. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
We demonstrate a straightforward technique to measure the linewidth of a grating-stabilized diode laser system - known as an external cavity diode laser (ECDL) - by beating the output of two independent ECDLs in a Michelson interferometer, and then taking the Fourier transform of the beat signal. The measured linewidth is the sum of the linewidths of the two laser systems. Assuming that the two are equal, we find that the linewidth of each ECDL measured over a time period of 2. s is about 0.3 MHz. This narrow linewidth shows the advantage of using such systems for high-resolution spectroscopy and other experiments in atomic physics.