123 resultados para asymptotically hyperbolic


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational tool called ``Directional Diffusion Regulator (DDR)'' is proposed to bring forth real multidimensional physics into the upwind discretization in some numerical schemes of hyperbolic conservation laws. The direction based regulator when used with dimension splitting solvers, is set to moderate the excess multidimensional diffusion and hence cause genuine multidimensional upwinding like effect. The basic idea of this regulator driven method is to retain a full upwind scheme across local discontinuities, with the upwind bias decreasing smoothly to a minimum in the farthest direction. The discontinuous solutions are quantified as gradients and the regulator parameter across a typical finite volume interface or a finite difference interpolation point is formulated based on fractional local maximum gradient in any of the weak solution flow variables (say density, pressure, temperature, Mach number or even wave velocity etc.). DDR is applied to both the non-convective as well as whole unsplit dissipative flux terms of some numerical schemes, mainly of Local Lax-Friedrichs, to solve some benchmark problems describing inviscid compressible flow, shallow water dynamics and magneto-hydrodynamics. The first order solutions consistently improved depending on the extent of grid non-alignment to discontinuities, with the major influence due to regulation of non-convective diffusion. The application is also experimented on schemes such as Roe, Jameson-Schmidt-Turkel and some second order accurate methods. The consistent improvement in accuracy either at moderate or marked levels, for a variety of problems and with increasing grid size, reasonably indicate a scope for DDR as a regular tool to impart genuine multidimensional upwinding effect in a simpler framework. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, by using the Hilbert Uniqueness Method (HUM), we study the exact controllability problem described by the wave equation in a three-dimensional horizontal domain bounded at the bottom by a smooth wall and at the top by a rough wall. The latter is assumed to consist in a plane wall covered with periodically distributed asperities whose size depends on a small parameter epsilon > 0, and with a fixed height. Our aim is to obtain the exact controllability for the homogenized equation. In the process, we study the asymptotic analysis of wave equation in two setups, namely solution by standard weak formulation and solution by transposition method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider multicast flow problems where either all of the nodes or only a subset of the nodes may be in session. Traffic from each node in the session has to be sent to every other node in the session. If the session does not consist of all the nodes, the remaining nodes act as relays. The nodes are connected by undirected edges whose capacities are independent and identically distributed random variables. We study the asymptotics of the capacity region (with network coding) in the limit of a large number of nodes, and show that the normalized sum rate converges to a constant almost surely. We then provide a decentralized push-pull algorithm that asymptotically achieves this normalized sum rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a family of Space-Time Block Codes (STBCs) C-1, C-2,..., with increasing number of transmit antennas N-i, with rates R-i complex symbols per channel use, i = 1, 2,..., we introduce the notion of asymptotic normalized rate which we define as lim(i ->infinity) R-i/N-i, and we say that a family of STBCs is asymptotically-good if its asymptotic normalized rate is non-zero, i. e., when the rate scales as a non-zero fraction of the number of transmit antennas. An STBC C is said to be g-group decodable, g >= 2, if the information symbols encoded by it can be partitioned into g groups, such that each group of symbols can be ML decoded independently of the others. In this paper we construct full-diversity g-group decodable codes with rates greater than one complex symbol per channel use for all g >= 2. Specifically, we construct delay-optimal, g-group decodable codes for number of transmit antennas N-t that are a multiple of g2left perpendicular(g-1/2)right perpendicular with rate N-t/g2(g-1) + g(2)-g/2N(t). Using these new codes as building blocks, we then construct non-delay-optimal g-group decodable codes with rate roughly g times that of the delay-optimal codes, for number of antennas N-t that are a multiple of 2left perpendicular(g-1/2)right perpendicular, with delay gN(t) and rate Nt/2(g-1) + g-1/2N(t). For each g >= 2, the new delay-optimal and non-delay- optimal families of STBCs are both asymptotically-good, with the latter family having the largest asymptotic normalized rates among all known families of multigroup decodable codes with delay T <= gN(t). Also, for g >= 3, these are the first instances of g-group decodable codes with rates greater than 1 reported in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We prove a result on the structure of finite proper holomorphic mappings between complex manifolds that are products of hyperbolic Riemann surfaces. While an important special case of our result follows from the ideas developed by Remmert and Stein, the proof of the full result relies on the interplay of the latter ideas and a finiteness theorem for Riemann surfaces.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Asymptotically-accurate dimensional reduction from three to two dimensions and recovery of 3-D displacement field of non-prestretched dielectric hyperelastic membranes are carried out using the Variational Asymptotic Method (VAM) with moderate strains and very small ratio of the membrane thickness to its shortest wavelength of the deformation along the plate reference surface chosen as the small parameters for asymptotic expansion. Present work incorporates large deformations (displacements and rotations), material nonlinearity (hyperelasticity), and electrical effects. It begins with 3-D nonlinear electroelastic energy and mathematically splits the analysis into a one-dimensional (1-D) through-the-thickness analysis and a 2-D nonlinear plate analysis. Major contribution of this paper is a comprehensive nonlinear through-the-thickness analysis which provides a 2-D energy asymptotically equivalent of the 3-D energy, a 2-D constitutive relation between the 2-D generalized strain and stress tensors for the plate analysis and a set of recovery relations to express the 3-D displacement field. Analytical expressions are derived for warping functions and stiffness coefficients. This is the first attempt to integrate an analytical work on asymptotically-accurate nonlinear electro-elastic constitutive relation for compressible dielectric hyperelastic model with a generalized finite element analysis of plates to provide 3-D displacement fields using VAM. A unified software package `VAMNLM' (Variational Asymptotic Method applied to Non-Linear Material models) was developed to carry out 1-D non-linear analysis (analytical), 2-D non-linear finite element analysis and 3-D recovery analysis. The applicability of the current theory is demonstrated through an actuation test case, for which distribution of 3-D displacements are provided. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A block-structured adaptive mesh refinement (AMR) technique has been used to obtain numerical solutions for many scientific applications. Some block-structured AMR approaches have focused on forming patches of non-uniform sizes where the size of a patch can be tuned to the geometry of a region of interest. In this paper, we develop strategies for adaptive execution of block-structured AMR applications on GPUs, for hyperbolic directionally split solvers. While effective hybrid execution strategies exist for applications with uniform patches, our work considers efficient execution of non-uniform patches with different workloads. Our techniques include bin-packing work units to load balance GPU computations, adaptive asynchronism between CPU and GPU executions using a knapsack formulation, and scheduling communications for multi-GPU executions. Our experiments with synthetic and real data, for single-GPU and multi-GPU executions, on Tesla S1070 and Fermi C2070 clusters, show that our strategies result in up to a 3.23 speedup in performance over existing strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study a hyperbolic problem in the framework of periodic homogenization assuming a high contrast between the diffusivity coefficients of the two components M-epsilon and B-epsilon of the heterogeneous medium. There are three regimes depending on the ratio between the size of the period and the amplitude a, of the diffusivity in B-epsilon. For the critical regime alpha(epsilon) similar or equal to epsilon, the limit problem is a strongly coupled system involving both the macroscopic and the microscopic variables. We also include the results in the non critical case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Studies on the swelling behaviour of mixtures of bentonite clay and nonswelling coarser fractions of different sizes and shapes reveal that observed swelling occurs only after the voids of the nonswelling particles are filled up with swollen clay particles. The magnitude of the swell within the voids, called intervoid swelling is large when the size and percentage of the nonswelling coarser fraction is large. The observable swell, after intervoid swelling, is called primary swelling and follows a rectangular hyperbolic relationship with time. The total swell per gram of the clay decreases with an increase in the size of the nonswelling fraction and with a decrease in the percentage of swelling clay. Time-swell relationships show that swelling continues to occur for a long time after the primary swelling, and this is called secondary swelling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper deals with the basic problem of adjusting a matrix gain in a discrete-time linear multivariable system. The object is to obtain a global convergence criterion, i.e. conditions under which a specified error signal asymptotically approaches zero and other signals in the system remain bounded for arbitrary initial conditions and for any bounded input to the system. It is shown that for a class of up-dating algorithms for the adjustable gain matrix, global convergence is crucially dependent on a transfer matrix G(z) which has a simple block diagram interpretation. When w(z)G(z) is strictly discrete positive real for a scalar w(z) such that w-1(z) is strictly proper with poles and zeros within the unit circle, an augmented error scheme is suggested and is proved to result in global convergence. The solution avoids feeding back a quadratic term as recommended in other schemes for single-input single-output systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is now well known that in extreme quantum limit, dominated by the elastic impurity scattering and the concomitant quantum interference, the zero-temperature d.c. resistance of a strictly one-dimensional disordered system is non-additive and non-self-averaging. While these statistical fluctuations may persist in the case of a physically thin wire, they are implicitly and questionably ignored in higher dimensions. In this work, we have re-examined this question. Following an invariant imbedding formulation, we first derive a stochastic differential equation for the complex amplitude reflection coefficient and hence obtain a Fokker-Planck equation for the full probability distribution of resistance for a one-dimensional continuum with a Gaussian white-noise random potential. We then employ the Migdal-Kadanoff type bond moving procedure and derive the d-dimensional generalization of the above probability distribution, or rather the associated cumulant function –‘the free energy’. For d=3, our analysis shows that the dispersion dominates the mobilitly edge phenomena in that (i) a one-parameter B-function depending on the mean conductance only does not exist, (ii) an approximate treatment gives a diffusion-correction involving the second cumulant. It is, however, not clear whether the fluctuations can render the transition at the mobility edge ‘first-order’. We also report some analytical results for the case of the one dimensional system in the presence of a finite electric fiekl. We find a cross-over from the exponential to the power-low length dependence of resistance as the field increases from zero. Also, the distribution of resistance saturates asymptotically to a poissonian form. Most of our analytical results are supported by the recent numerical simulation work reported by some authors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A learning automaton operating in a random environment updates its action probabilities on the basis of the reactions of the environment, so that asymptotically it chooses the optimal action. When the number of actions is large the automaton becomes slow because there are too many updatings to be made at each instant. A hierarchical system of such automata with assured c-optimality is suggested to overcome that problem.The learning algorithm for the hierarchical system turns out to be a simple modification of the absolutely expedient algorithm known in the literature. The parameters of the algorithm at each level in the hierarchy depend only on the parameters and the action probabilities of the previous level. It follows that to minimize the number of updatings per cycle each automaton in the hierarchy need have only two or three actions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The assumption of nodes in a cooperative communication relay network operating in synchronous fashion is often unrealistic. In the present paper we consider two different models of asynchronous operation in cooperative-diversity networks experiencing slow fading and examine the corresponding diversity-multiplexing tradeoffs (DMT). For both models, we propose protocols and distributed space-time codes that asymptotically achieve the transmit diversity bound for all multiplexing gains and for number of relays N >= 2.