61 resultados para archaeological reconstruction


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A claw is an induced subgraph isomorphic to K-1,K-3. The claw-point is the point of degree 3 in a claw. A graph is called p-claw-free when no p-cycle has a claw-point on it. It is proved that for p greater than or equal to 4, p-claw-free graphs containing at least one chordless p-cycle are edge reconstructible. It is also proved that chordal graphs are edge reconstructible. These two results together imply the edge reconstructibility of claw-free graphs. A simple proof of vertex reconstructibility of P-4-reducible graphs is also presented. (C) 1995 John Wiley and Sons, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, a procedure is presented for the reconstruction of biological organs from image sequences obtained through CT-scan. Although commercial software, which can accomplish this task, are readily available, the procedure presented here needs only free software. The procedure has been applied to reconstruct a liver from the scan data available in literature. 3D biological organs obtained this way can be used for the finite element analysis of biological organs and this has been demonstrated by carrying out an FE analysis on the reconstructed liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of exact complex-wave reconstruction in digital holography. We show that, by confining the object-wave modulation to one quadrant of the frequency domain, and by maintaining a reference-wave intensity higher than that of the object, one can achieve exact complex-wave reconstruction in the absence of noise. A feature of the proposed technique is that the zero-order artifact, which is commonly encountered in hologram reconstruction, can be completely suppressed in the absence of noise. The technique is noniterative and nonlinear. We also establish a connection between the reconstruction technique and homomorphic signal processing, which enables an interpretation of the technique from the perspective of deconvolution. Another key contribution of this paper is a direct link between the reconstruction technique and the two-dimensional Hilbert transform formalism proposed by Hahn. We show that this connection leads to explicit Hilbert transform relations between the magnitude and phase of the complex wave encoded in the hologram. We also provide results on simulated as well as experimental data to validate the accuracy of the reconstruction technique. (C) 2011 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present experimental investigation of a new reconstruction method for off-axis digital holographic microscopy (DHM). This method effectively suppresses the object auto-correlation, commonly called the zero-order term, from holographic measurements, thereby suppressing the artifacts generated by the intensities of the two beams employed for interference from complex wavefield reconstruction. The algorithm is based on non-linear filtering, and can be applied to standard DHM setups, with realistic recording conditions. We study the applicability of the technique under different experimental configurations, such as topographic images of microscopic specimens or speckle holograms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the introduction of 2D flat-panel X-ray detectors, 3D image reconstruction using helical cone-beam tomography is fast replacing the conventional 2D reconstruction techniques. In 3D image reconstruction, the source orbit or scanning geometry should satisfy the data sufficiency or completeness condition for exact reconstruction. The helical scan geometry satisfies this condition and hence can give exact reconstruction. The theoretically exact helical cone-beam reconstruction algorithm proposed by Katsevich is a breakthrough and has attracted interest in the 3D reconstruction using helical cone-beam Computed Tomography.In many practical situations, the available projection data is incomplete. One such case is where the detector plane does not completely cover the full extent of the object being imaged in lateral direction resulting in truncated projections. This result in artifacts that mask small features near to the periphery of the ROI when reconstructed using the convolution back projection (CBP) method assuming that the projection data is complete. A number of techniques exist which deal with completion of missing data followed by the CBP reconstruction. In 2D, linear prediction (LP)extrapolation has been shown to be efficient for data completion, involving minimal assumptions on the nature of the data, producing smooth extensions of the missing projection data.In this paper, we propose to extend the LP approach for extrapolating helical cone beam truncated data. The projection on the multi row flat panel detectors has missing columns towards either ends in the lateral direction in truncated data situation. The available data from each detector row is modeled using a linear predictor. The available data is extrapolated and this completed projection data is backprojected using the Katsevich algorithm. Simulation results show the efficacy of the proposed method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

3D Face Recognition is an active area of research for past several years. For a 3D face recognition system one would like to have an accurate as well as low cost setup for constructing 3D face model. In this paper, we use Profilometry approach to obtain a 3D face model.This method gives a low cost solution to the problem of acquiring 3D data and the 3D face models generated by this method are sufficiently accurate. We also develop an algorithm that can use the 3D face model generated by the above method for the recognition purpose.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the image reconstruction using the fan-beam filtered backprojection (FBP) algorithm with no backprojection weight from windowed linear prediction (WLP) completed truncated projection data. The image reconstruction from truncated projections aims to reconstruct the object accurately from the available limited projection data. Due to the incomplete projection data, the reconstructed image contains truncation artifacts which extends into the region of interest (ROI) making the reconstructed image unsuitable for further use. Data completion techniques have been shown to be effective in such situations. We use windowed linear prediction technique for projection completion and then use the fan-beam FBP algorithm with no backprojection weight for the 2-D image reconstruction. We evaluate the quality of the reconstructed image using fan-beam FBP algorithm with no backprojection weight after WLP completion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This report describes some preliminary experiments on the use of the relaxation technique for the reconstruction of the elements of a matrix given their various directional sums (or projections).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cooperative integration of stereopsis and shape-from-shading is presented. The integration makes the process of D surface reconstruction better constrained and more reliable. It also obviates the need for surface boundary conditions, and explicit information about the surface albedo and the light source direction, which can now be estimated in an iterative manner

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: The authors aim at developing a pseudo-time, sub-optimal stochastic filtering approach based on a derivative free variant of the ensemble Kalman filter (EnKF) for solving the inverse problem of diffuse optical tomography (DOT) while making use of a shape based reconstruction strategy that enables representing a cross section of an inhomogeneous tumor boundary by a general closed curve. Methods: The optical parameter fields to be recovered are approximated via an expansion based on the circular harmonics (CH) (Fourier basis functions) and the EnKF is used to recover the coefficients in the expansion with both simulated and experimentally obtained photon fluence data on phantoms with inhomogeneous inclusions. The process and measurement equations in the pseudo-dynamic EnKF (PD-EnKF) presently yield a parsimonious representation of the filter variables, which consist of only the Fourier coefficients and the constant scalar parameter value within the inclusion. Using fictitious, low-intensity Wiener noise processes in suitably constructed ``measurement'' equations, the filter variables are treated as pseudo-stochastic processes so that their recovery within a stochastic filtering framework is made possible. Results: In our numerical simulations, we have considered both elliptical inclusions (two inhomogeneities) and those with more complex shapes (such as an annular ring and a dumbbell) in 2-D objects which are cross-sections of a cylinder with background absorption and (reduced) scattering coefficient chosen as mu(b)(a)=0.01mm(-1) and mu('b)(s)=1.0mm(-1), respectively. We also assume mu(a) = 0.02 mm(-1) within the inhomogeneity (for the single inhomogeneity case) and mu(a) = 0.02 and 0.03 mm(-1) (for the two inhomogeneities case). The reconstruction results by the PD-EnKF are shown to be consistently superior to those through a deterministic and explicitly regularized Gauss-Newton algorithm. We have also estimated the unknown mu(a) from experimentally gathered fluence data and verified the reconstruction by matching the experimental data with the computed one. Conclusions: The PD-EnKF, which exhibits little sensitivity against variations in the fictitiously introduced noise processes, is also proven to be accurate and robust in recovering a spatial map of the absorption coefficient from DOT data. With the help of shape based representation of the inhomogeneities and an appropriate scaling of the CH expansion coefficients representing the boundary, we have been able to recover inhomogeneities representative of the shape of malignancies in medical diagnostic imaging. (C) 2012 American Association of Physicists in Medicine. [DOI: 10.1118/1.3679855]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have developed an efficient fully three-dimensional (3D) reconstruction algorithm for diffuse optical tomography (DOT). The 3D DOT, a severely ill-posed problem, is tackled through a pseudodynamic (PD) approach wherein an ordinary differential equation representing the evolution of the solution on pseudotime is integrated that bypasses an explicit inversion of the associated, ill-conditioned system matrix. One of the most computationally expensive parts of the iterative DOT algorithm, the reevaluation of the Jacobian in each of the iterations, is avoided by using the adjoint-Broyden update formula to provide low rank updates to the Jacobian. In addition, wherever feasible, we have also made the algorithm efficient by integrating along the quadratic path provided by the perturbation equation containing the Hessian. These algorithms are then proven by reconstruction, using simulated and experimental data and verifying the PD results with those from the popular Gauss-Newton scheme. The major findings of this work are as follows: (i) the PD reconstructions are comparatively artifact free, providing superior absorption coefficient maps in terms of quantitative accuracy and contrast recovery; (ii) the scaling of computation time with the dimension of the measurement set is much less steep with the Jacobian update formula in place than without it; and (iii) an increase in the data dimension, even though it renders the reconstruction problem less ill conditioned and thus provides relatively artifact-free reconstructions, does not necessarily provide better contrast property recovery. For the latter, one should also take care to uniformly distribute the measurement points, avoiding regions close to the source so that the relative strength of the derivatives for measurements away from the source does not become insignificant. (c) 2012 Optical Society of America

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffuse optical tomography (DOT) is one of the ways to probe highly scattering media such as tissue using low-energy near infra-red light (NIR) to reconstruct a map of the optical property distribution. The interaction of the photons in biological tissue is a non-linear process and the phton transport through the tissue is modelled using diffusion theory. The inversion problem is often solved through iterative methods based on nonlinear optimization for the minimization of a data-model misfit function. The solution of the non-linear problem can be improved by modeling and optimizing the cost functional. The cost functional is f(x) = x(T)Ax - b(T)x + c and after minimization, the cost functional reduces to Ax = b. The spatial distribution of optical parameter can be obtained by solving the above equation iteratively for x. As the problem is non-linear, ill-posed and ill-conditioned, there will be an error or correction term for x at each iteration. A linearization strategy is proposed for the solution of the nonlinear ill-posed inverse problem by linear combination of system matrix and error in solution. By propagating the error (e) information (obtained from previous iteration) to the minimization function f(x), we can rewrite the minimization function as f(x; e) = (x + e)(T) A(x + e) - b(T)(x + e) + c. The revised cost functional is f(x; e) = f(x) + e(T)Ae. The self guided spatial weighted prior (e(T)Ae) error (e, error in estimating x) information along the principal nodes facilitates a well resolved dominant solution over the region of interest. The local minimization reduces the spreading of inclusion and removes the side lobes, thereby improving the contrast, localization and resolution of reconstructed image which has not been possible with conventional linear and regularization algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We address the problem of high-resolution reconstruction in frequency-domain optical-coherence tomography (FDOCT). The traditional method employed uses the inverse discrete Fourier transform, which is limited in resolution due to the Heisenberg uncertainty principle. We propose a reconstruction technique based on zero-crossing (ZC) interval analysis. The motivation for our approach lies in the observation that, for a multilayered specimen, the backscattered signal may be expressed as a sum of sinusoids, and each sinusoid manifests as a peak in the FDOCT reconstruction. The successive ZC intervals of a sinusoid exhibit high consistency, with the intervals being inversely related to the frequency of the sinusoid. The statistics of the ZC intervals are used for detecting the frequencies present in the input signal. The noise robustness of the proposed technique is improved by using a cosine-modulated filter bank for separating the input into different frequency bands, and the ZC analysis is carried out on each band separately. The design of the filter bank requires the design of a prototype, which we accomplish using a Kaiser window approach. We show that the proposed method gives good results on synthesized and experimental data. The resolution is enhanced, and noise robustness is higher compared with the standard Fourier reconstruction. (c) 2012 Optical Society of America