49 resultados para alternative press
Resumo:
We have constructed a space-filling (Corey-Pauling-Koltun) model of an alternative structure for DNA. This structure is not a double helix, but consists of a pair of polynucleotide strands lying side by side and held together by Watson-Crick base pairing. Each of the two strands has alternating right- and left-handed helical segments approximately five base pairs in length. Sugar residues in alternating segments along a strand point in opposite directions. A structure slightly different from the present one proposed earlier by ourselves and another group and in which sugars in a strand all point in the same direction is ruled out. The present structure yields natural solutions to the problems of supercoiling of DNA and of strand separation during DNA replication. This model is energetically more favorable than the double helix.
Resumo:
An alternative pulse scheme which simplifies and improves the recently proposed P.E.COSY experiment is suggested for the retention of connected or unconnected transitions in a coupled spin system. An important feature of the proposed pulse scheme is the improved phase characteristics of the diagonal peaks. A comparison of various experiments designed for this purpose, namely COSY-45, E.COSY, P.E.COSY and the present scheme (A.E.COSY), is also presented. The suppression of unconnected transitions and the measurement of scalar coupling constants and their relative signs are illustrated from A.E.COSY spectra of 2,3-dibromopropionic acid and 2-(2-thienyl)pyridine.
Resumo:
A thiamin-binding protein was isolated and characterized from chicken egg white by affinity chromatography on thiamin pyrophosphate coupled to aminoethyl-Sepharose. The high specificity of interaction between the thiamin-binding protein and the riboflavin-binding protein of the egg white, with a protein/protein molar ratio of 1.0, led to the development of an alternative procedure that used the riboflavin-binding protein immobilized on CNBr-activated Sepharose as the affinity matrix. The thiamin-binding protein thus isolated was homogeneous by the criteria of polyacrylamide-gel disc electrophoresis, double immunodiffusion and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis, had a mol.wt. of 38,000 +/- 2000 and was not a glycoprotein. The protein bound [14C]thiamin was a molar ratio of 1.0, with dissociation constant (Kd) 0.3 micrometer.
Resumo:
Chill treatment of potato tubers for 8 days induced mitochondrial O-2 consumption by cyanide-insensitive alternative oxidase (AOX). About half of the total O-2 consumption in such mitochondria was found to be sensitive to salicylhydroxamate (SHAM), a known inhibitor of AOX activity. Addition of catalase to the reaction mixture of AOX during the reaction decreased the rate of SHAM-sensitive O-2 consumption by nearly half, and addition at the end of the reaction released half of the O-2 consumed by AOX, both typical of catalase action on H2O2. This reaffirmed that the product of reduction of O-2 by plant AOX was H2O2 as found earlier and not H2O as reported in some recent reviews.
Resumo:
This article presents dimensionless equations for the temperature dependence of the saturated liquid viscosity of R32, R123, R124, R125, R134a, R141b, and R152a valid over a temperature range of engineering interest. The correlation has the form Phi(D)(n)=A+BTD where Phi(D) is the dimensionless fluidity (1/eta(D)) and T-D is a dimensionless temperature. n, A, and B are evaluated for each of the above refrigerants based on a least-squares fit to experimental data. This equation is found to provide an improved fit over those existing in the literature up to T-D=0.8.
Resumo:
A two timescale stochastic approximation scheme which uses coupled iterations is used for simulation-based parametric optimization as an alternative to traditional "infinitesimal perturbation analysis" schemes, It avoids the aggregation of data present in many other schemes. Its convergence is analyzed, and a queueing example is presented.
Resumo:
A two-time scale stochastic approximation algorithm is proposed for simulation-based parametric optimization of hidden Markov models, as an alternative to the traditional approaches to ''infinitesimal perturbation analysis.'' Its convergence is analyzed, and a queueing example is presented.
Resumo:
Two regiospecific modifications have been developed in the synthesis of valeranone. The first one is based on the regiospecific protection of a diol and the second is based on the Wittig reaction of a hemiacetal.
Resumo:
In this paper, a wind energy conversion system (WECS) using grid-connected wound rotor induction machine controlled from the rotor side is compared with both fixed speed and variable speed systems using cage rotor induction machine. The comparison is done on the basis of (I) major hardware components required, (II) operating region, and (III) energy output due to a defined wind function using the characteristics of a practical wind turbine. Although a fixed speed system is more simple and reliable, it severely limits the energy output of a wind turbine. In case of variable speed systems, comparison shows that using a wound rotor induction machine of similar rating can significantly enhance energy capture. This comes about due to the ability to operate with rated torque even at supersynchronous speeds; power is then generated out of the rotor as well as the stator. Moreover, with rotor side control, the voltage rating of the power devices and dc bus capacitor bank is reduced. The size of the line side inductor also decreasesd. Results are presented to show the substantial advantages of the doubly fed system.
Resumo:
Substantial amount of fixed charge present in most of the alternative gate dielectrics gives rise to large shifts in the flat-band voltage (VFB) and charge trapping and de-trapping causes hysterectic changes on voltage cycling. Both phenomena affect stable and reliable transistor operation. In this paper we have studied for the first time the effect of post-metallization hydrogen annealing on the C-V curve of MOS capacitors employing zirconia, one of the most promising gate dielectric. Samples were annealed in hydrogen ambient for up to 30 minutes at different temperatures ranging from room temperature to 400°C. C-V measurements were done after annealing at each temperature and the hysteresis width was calculated from the C-V curves. A minimum hysteresis width of ∼35 mV was observed on annealing the sample at 200°C confirming the excellent suitability of this dielectric
Resumo:
Closed-form analytical expressions are derived for the reflection and transmission coefficients for the problem of scattering of surface water waves by a sharp discontinuity in the surface-boundary-conditions, for the case of deep water. The method involves the use of the Havelock-type expansion of the velocity potential along with an analysis to solve a Carleman-type singular integral equation over a semi-infinite range. This method of solution is an alternative to the Wiener-Hopf technique used previously.
Resumo:
Noble metal such as Ag normally exists in an fcc crystal structure. However as the size of the material is decreased to nanometer lengthscales, a structural transformation from that of its bulk state can be expected with new atomic arrangements due to competition between internal packing and minimization of surface energy. In many previous studies, it has been shown that silver nanowires (AGNWs) grown inside anodic alumina (AAO) templates by ac or dc electrochemical deposition from silver salts or complexes, adopt fcc structure and below some critical diameter ∼ 20 nm they may acquire hcp structure at low temperature. This is, however, critically dependant on the nature of confinement, as AgNWs grown inside nanotube confinement with subnanometer diameter have been reported to have fcc structure. Hence the question of the crystal structure of metal nanowires under combined influence of confinement, temperature and deposition condition remains open. In this abstract we show that the alternative crystal structures of AGNWs at room temperature can be achieved with electrochemical growth processes under specific conditions determined by the deposition parameters and nature of confinement. We fabricated AgNWs of 4H hexagonal structure with diameters 30 – 80 nm inside polycarbonate (PC) templates with a modified dc electrodeposition technique, where the nanowires were grown at deposition potentials as low as 10 mV in 2 M silver nitrate solution[1]. We call this low-potential electrodeposition (LPED) since the electrodeposition process occurs at potential much less than the standard Nernst potential (770 mV) of silver. Two types of electrodes were used – stainless steel and sputtered thin Pt film, neither of which had any influence on the crystal structure of the nanowires. EDS elemental analysis showed the nanowires to consist only of silver. Although the precise atomic dynamics during the LPED process is unclear at present, we investigated this with HRTEM (high-resolution transmission electron microscopy) characterization of nanowires grown over various deposition times, as well as electrical conductivity measurements. These experiments indicate that nanowire growth does not occur through a three-dimensional diffusion controlled process, as proposed for conventional over-potential deposition, but follow a novel instantaneous linear growth mechanism. Further experiments showed that, (a) conventional electrochemical growth at a small over-potential in a 2 mM AgNO3 solution yields nanowires with expected fcc structure inside the same PC templates, and (2) no nanowire was observed under the LPED conditions inside hard AAO templates, indicating that LPED-growth process, and hcp structure of the corresponding nanowires depend on deposition parameters, as well as nature of confinement.