67 resultados para advanced materials
Resumo:
A simple route for tailoring emissions in the visible wavelength region by chemically coupling quantum dots composed of ZnSe and CdS is reported. coupled quantum dots offer a novel route for tuning electronic transitions via band-offset engineering at the material interface. This novel class of asymmetric. coupled quantum structures may offer a basis for a diverse set of building blocks for optoelectronic devices, ultrahigh density memories, and quantum information processing.
Resumo:
The recent studies on the switching. behavior of several chalcogenide semiconductors indicate that there exists a close relation between the electrical switching and structural effects in these materials; the two network topological Thresholds, namely the Rigidity Percolation and the Chemical Threshold are found to influence considerably the composition dependence of the switching voltages/fields of many memory and threshold switching glasses. Further, changes in the coordination of constituent atoms are found to effect a change in the switching behavior (memory to threshold), Also, an interesting relation has been established between the type of switching exhibited and the thermal diffusivity of the material.
Resumo:
The role played by defects in bringing out n-type conduction in Ge20Se80-xBix and Ge20Se70-xBixTe10 glasses is using investigated photoluminescence (PL) spectroscopy. It was found that for both the systems, the compositions at lower Bi content exhibit luminescence with fine features associated while the compositions that show n-type conduction do not exhibit luminescence. The identification of the associated fine features, carried out by deconvoluting the experimental spectra, reveals that Bi addition brings out a relative diminishing in D+ defects as compared to D- ones. The study gives an overall indication for the role played by native defects in bringing out n-type conduction in Bi-doped glasses.