159 resultados para Zodiacal light.
Resumo:
Suspension cultures of Catharanthus roseus were used to evaluate ultraviolet-B (UV-B) treatment as an abiotic elicitor of secondary metabolites. A dispersed cell suspension culture from C. roseus leaves in late exponential phase and stationary phase were irradiated with UV-B for 5 min. The stationary phase cultures were more responsive to UV-B irradiation than late exponential phase cultures. Catharanthine and vindoline increased 3-fold and 12-fold, respectively, on treatment with a 5-min UV-B irradiation.
Resumo:
The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA- treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had not detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These date indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.
Resumo:
Cobalt(III) complexes [Co(pnt)(B)(2)](NO3)(2) (1-3) of pyridine-2-thiol (pnt) and phenanthroline bases (B), viz. 1,10-phenanthroline (phen in 1), dipyrido[3,2-d: 2',3'-f]quinoxaline (dpq in 2) and dipyrido[3,2-a:2',3'-c] phenazine (dppz in 3), have been prepared, characterized and their photo-induced anaerobic DNA cleavage activity studied. The crystal structure of 1a as mixed ClO4- and PF6- salt of 1 shows a (CoN5S)-N-III coordination geometry in which the pnt and phen showed N,S- and N,N-donor binding modes, respectively. The complexes exhibit Co(III)/Co(II) redox couple near -0.3 V (vs. SCE) in 20% DMF-Tris-HCl buffer having 0.1 M TBAP. The complexes show binding propensity to calf thymus DNA giving K-b values within 2.2 x 10(4)-7.3 x 10(5) M-1. Thermal melting and viscosity data suggest DNA surface and/or groove binding of the complexes. The complexes show significant anaerobic DNA cleavage activity in red light under argon atmosphere possibly involving sulfide anion radical or thiyl radical species. The DNA cleavage reaction under aerobic medium in red light is found to involve both singlet oxygen and hydroxyl radical pathways. The dppz complex 3 shows non-specific BSA and lysozyme protein cleavage activity in UV-A light of 365 nm via both hydroxyl and singlet oxygen pathways. The dppz complex 3 exhibits photocytotoxicity in HeLa cervical cancer cells giving IC50 values of 767 nM and 19.38 mu M in UV-A light of 365 nm and in the dark, respectively. A significant reduction of the dark toxicity of the dppz base (IC50 = 8.34 mu M in dark) is observed on binding to the cobalt(III) center.
Resumo:
Ternary copper(II) complexes [Cu(L-trp)(B)(H2O)](NO3) ( 1–3) and [Cu(L-phe)(B)(H2O)](NO3) ( 4–6) of L-tryptophan (L-trp) and L-phenylalanine (L-phe) having phenanthroline bases (B), viz. 1,10-phenanthroline (phen, 1 and 4), dipyrido[3,2-d:2,3-f]quinoxaline (dpq, 2 and 5) and dipyrido[3,2-a:2,3-c]phenazine (dppz, 3 and 6), were prepared and characterized by physico-chemical techniques. Complexes 3 and 6 were structurally characterized by X-ray crystallography and show the presence of a square pyramidal (4 + 1) CuN3O2 coordination geometry in which the N,O-donor amino acid (L-trp or L-phe) and N,N-donor phenanthroline base bind at the equatorial plane with an aqua ligand coordinated at the elongated axial site. Complex 3 shows significant distortion from the square pyramidal geometry and a strong intramolecular – stacking interaction between the pendant indole ring of L-trp and the planar dppz aromatic moiety. All the complexes display good binding propensity to the calf thymus DNA giving an order: 3, 6 (dppz) > 2, 5 (dpq) > 1, 4 (phen). The binding constant (Kb) values are in the range of 2.1 × 104–1.1 × 106 mol-1 with the binding site size (s) values of 0.17–0.63. The phen and dpq complexes are minor groove binders while the dppz analogues bind at the DNA major groove. Theoretical DNA docking studies on 2 and 3 show the close proximity of two photosensitizers, viz. the indole moiety of L-trp and the quinoxaline/phenazine of the dpq/dppz bases, to the complementary DNA strands. Complexes 2 and 3 show oxidative DNA double strand breaks (dsb) of supercoiled (SC) DNA forming a significant quantity of linear DNA along with the nicked circular (NC) form on photoexposure to UV-A light of 365 nm and red light of 647.1 nm (Ar–Kr laser). Complexes 1, 5 and 6 show only single strand breaks (ssb) forming NC DNA. The red light induced DNA cleavage involves metal-assisted photosensitization of L-trp and dpq/dppz base resulting in the formation of a reactive singlet oxygen (1O2) species.
Resumo:
Oleate-capped ZnO:MgO nanocrystals have been synthesized that are soluble in nonpolar solvents and which emit strongly in the visible region (450−600 nm) on excitation by UV radiation. The visible emission involves recombination of trap states of the nanocrystalline ZnO core and has a higher quantum yield than the band gap UV exciton emission. The spectrally resolved dynamics of the trap states have been investigated by time-resolved emission spectroscopy. The time-evolution of the photoluminescence spectra show that there are, in fact, two features in the visible emission whose relative importance and efficiencies vary with time. These features originate from recombination involving trapped electrons and holes, respectively, and with efficiencies that depend on the occupancy of the trap density of states.
Resumo:
Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.
Resumo:
Lanthanide complexes of formulation [La(B)(2)(NO3)(3)] (1-3) and [Gd(B)(2)(NO3)(3)] (4-6), where B is a N,N-donor phenanthroline base, namely, 1,10-phenanthroline (phen in 1, 4),dipyrido[3,2-d2',3'-f]quinoxaline (dpq in 2,5) and dipyrido[3,2-a2',3'-c]phenazine (dppz in 3, 6), have been prepared, characterized from physicochemical data, and their photoinduced DNA and protein cleavage activity studied The photocytotoxicity of the dppz complexes 3 and 6 has been studied using HeLa cancer cells. The complexes exhibitligand centered bands in the UV region The dppz complexes show thelowest energy band at 380 nm in N,N-dimethylformamide (DMF) The La(III)complexes are diamagnetic. The Gd(III) complexes (4-6) have magneticmoments that correspond to seven unpaired electrons The complexes are1(.)1 electrolytic in aqueous DMF The dpq and dppz complexes in DMFshow ligand-based reductions. The complexes display moderate binding propensity to calf thymus DNA giving binding constant values in the range of 5.7 x 10(4)-5.8 x 10(5) M-1 with a relative order. 3, 6 (dppz)> 2, 5 (dpq) > 1, 4 (phen) The binding data suggest DNA surface and/or groove binding nature of the complexes. The complexes do not show any hydrolytic cleavage of plasmid supercoiled pUC19 DNA. The dpq and dppz complexes efficiently cleave SC DNA to its nicked circular form onexposure to UV-A light of 365 nm at nanomolar complex concentration. Mechanistic studies reveal the involvement of singlet oxygen (O-1(2)) and hydroxyl radical (HO center dot) as the cleavage active species.The complexes show binding propensity to bovine serum albumin (BSA)protein giving K-BSA values of similar to 10(5) M-1. The dppz complexes 3 and 6 show BSA protein cleavage activity in UV-A light of 365 nm The dppz complexes 3 and 6 exhibit significant photocytotoxicity in HeLa cells giving respective IC50 values of 341 nM and 573 nM in UV-A light of 365 nm for an exposure time of 15 min (IC50 > 100 mu M in dark for both the complexes) Control experiments show significant dark and phototoxicity of the dppz base alone (IC50 = 413 nM in light with 4 h incubation in dark and 116 mu M in dark with 24 h incubation). A significant decrease in the dark toxicity of the dppz base is observedon binding to the lanthanide ions while retaining similar phototoxicity.
Resumo:
In this paper, an attempt is made to study the influence of external light waves on the thermoelectric power under strong magnetic field (TPSM) in ultrathin films (UFs), quantum wires (QWs) and quantum dots (QDs) of optoelectronic materials whose unperturbed dispersion relation of the conduction electrons are defined by three and two band models of Kane together with parabolic energy bands on the basis of newly formulated electron dispersion laws in each case. We have plotted the TPSM as functions of film thickness, electron concentration, light intensity and wavelength for UFs, QWs and ODs of InSb, GaAs, Hg1-xCdxTe and In1-xGaxAsyP1-y respectively. It appears from the figures that for UFs, the TPSM increases with increasing thickness in quantum steps, decreases with increasing electron degeneracy exhibiting entirely different types of oscillations and changes with both light intensity and wavelength and these two latter types of plots are the direct signature of light waves on opto-TPSM. For QWs, the opto-TPSM exhibits rectangular oscillations with increasing thickness and shows enhanced spiky oscillations with electron concentration per unit length. For QDs, the opto-TPSM increases with increasing film thickness exhibiting trapezoidal variations which occurs during quantum jumps and the length and breadth of the trapezoids are totally dependent on energy band constants. Under the condition of non-degeneracy, the results of opto-TPSM gets simplified into the well-known form of classical TPSM equation which the function of three constants only and being invariant of the signature of band structure.
Resumo:
An indirect mechanism of light scattering from spin-waves in ferromagnetic insulators via two-magnon one-phonon process is proposed. Following linear response theory, an expression has been derived for the differential scattering cross-section in the mean-field-approximation.
Resumo:
For structured-light scanners, the projective geometry between a projector-camera pair is identical to that of a camera-camera pair. Consequently, in conjunction with calibration, a variety of geometric relations are available for three-dimensional Euclidean reconstruction. In this paper, we use projector-camera epipolar properties and the projective invariance of the cross-ratio to solve for 3D geometry. A key contribution of our approach is the use of homographies induced by reference planes, along with a calibrated camera, resulting in a simple parametric representation for projector and system calibration. Compared to existing solutions that require an elaborate calibration process, our method is simple while ensuring geometric consistency. Our formulation using the invariance of the cross-ratio is also extensible to multiple estimates of 3D geometry that can be analysed in a statistical sense. The performance of our system is demonstrated on some cultural artifacts and geometric surfaces.
Resumo:
Ultrafine powders of (Ti1-xSnx)O2, 0
Resumo:
Purpose: To assess the effect of ultrasound modulation of near infrared (NIR) light on the quantification of scattering coefficient in tissue-mimicking biological phantoms.Methods: A unique method to estimate the phase of the modulated NIR light making use of only time averaged intensity measurements using a charge coupled device camera is used in this investigation. These experimental measurements from tissue-mimicking biological phantoms are used to estimate the differential pathlength, in turn leading to estimation of optical scattering coefficient. A Monte-Carlo model base numerical estimation of phase in lieu of ultrasound modulation is performed to verify the experimental results. Results: The results indicate that the ultrasound modulation of NIR light enhances the effective scattering coefficient. The observed effective scattering coefficient enhancement in tissue-mimicking viscoelastic phantoms increases with increasing ultrasound drive voltage. The same trend is noticed as the ultrasound modulation frequency approaches the natural vibration frequency of the phantom material. The contrast enhancement is less for the stiffer (larger storage modulus) tissue, mimicking tumor necrotic core, compared to the normal tissue. Conclusions: The ultrasound modulation of the insonified region leads to an increase in the effective number of scattering events experienced by NIR light, increasing the measured phase, causing the enhancement in the effective scattering coefficient. The ultrasound modulation of NIR light could provide better estimation of scattering coefficient. The observed local enhancement of the effective scattering coefficient, in the ultrasound focal region, is validated using both experimental measurements and Monte-Carlo simulations. (C) 2010 American Association of Physicists in Medicine. [DOI: 10.1118/1.3456441]
Resumo:
This paper presents an analysis of the effects of ambients-temperature and light intensity on the V-l characteristics of bipolar transistors under electrical breakdown. The analysis is based on the transportation and storage of majority carriers in the base region. It is shown that this analysis can explain the observed shift in the V-l characteristics to lower voltages with increase in either temperature or light intensity.
Resumo:
Sinusoidal structured light projection (SSLP) technique, specifically-phase stepping method, is in widespread use to obtain accurate, dense 3-D data. But, if the object under investigation possesses surface discontinuities, phase unwrapping (an intermediate step in SSLP) stage mandatorily require several additional images, of the object with projected fringes (of different spatial frequencies), as input to generate a reliable 3D shape. On the other hand, Color-coded structured light projection (CSLP) technique is known to require a single image as in put, but generates sparse 3D data. Thus we propose the use of CSLP in conjunction with SSLP to obtain dense 3D data with minimum number of images as input. This approach is shown to be significantly faster and reliable than temporal phase unwrapping procedure that uses a complete exponential sequence. For example, if a measurement with the accuracy obtained by interrogating the object with 32 fringes in the projected pattern is carried out with both the methods, new strategy proposed requires only 5 frames as compared to 24 frames required by the later method.
Resumo:
Oxovanadium(IV) complexes VO(L)(B)] (1-3), where H2L is a Schiff base ligand 2-(2-hydroxybenzylideneamino) phenol and B is 1,10-phenanthroline (phen for 1), dipyrido3,2-d:2',3'-f]quinoxaline (dpq for 2) or dipyrido3,2-a:2',3'-c]phenazine (dppz for 3), have been prepared, characterized and their DNA binding property and photo-induced DNA cleavage activity studied. Complex 3 which is structurally characterized by X-ray crystallography shows the presence of an oxovanadium(IV) moiety in a six coordinate VO3N3 coordination geometry. The complexes show a d-d band within 800-850 nm in DMF. The complexes display an oxidative response near 0.7 V versus SCE for V(V)-V(IV) and a reductive response within -1.1 to -1.3 V due to V(IV)-V(III) couple in DMF-0.1 M TBAP. The complexes are avid binders to calf thymus DNA giving binding constant values of 4.2 x 10(4) to 1.2 x 10(5) M (1). The complexes do not show any ``chemical nuclease'' activity in dark. The dpq and dppz complexes are photocleavers of plasmid DNA in UV-A light of 365 nm via O-1(2) pathway and in near-IR light (752.5 to 799.3 nm IR optics) by HO* pathway. Complex 3 exhibits significant photocytotoxicity in visible light in HeLa cells giving IC50 value of 13 mu M, while it is less toxic in dark (IC50 = 97 mu M). (C) 2010 Elsevier B.V. All rights reserved.