53 resultados para Youden Apparatus
Resumo:
This paper describes a method for the dynamic digital simulation of HVDC transmission systems. The method employs a novel modular converter representation during both normal and abnormal conditions.
Resumo:
The rate of NADH oxidation with oxygen as the acceptor is very low in mouse liver plasma membrane and erythrocyte membrane. When vanadate is added, this rate is stimulated 10- to 20-fold. The absorption spectrum of vanadate does not change with the disappearance of NADH. The reaction is inhibited by superoxide dismutase, and there is no activity under an argon atmosphere. This indicates that oxygen is the electron acceptor and the reaction is mediated by superoxide. The vanadate stimulation is not limited to plasma membrane. Golgi apparatus and endoplasmic reticulum show similar increase in NADH oxidase activity when vanadate is added. The endomembranes have significant vanadate-stimulated activity with both NADH and NADPH. The vanadate-stimulated NADH oxidase in plasma membrane is inhibited by compounds, which inhibit NADH dehydrogenase activity: catechols, anthracycline drugs and manganese. This activity is stimulated by high phosphate and sulfate anion concentrations.
Resumo:
On the basis of dodecahedral structure of a foam bed, a model to predict conversion in a foam bed contactor with mass transfer with chemical reaction has been developed. To verify the proposed model, experiments have been carried out in a semi-batch apparatus for the absorption of lean CO2 gas in a foam of sodium hydroxide solution. The proposed model predicts fairly well the experimentally found absorption values.
Resumo:
India has rich traditions of nature conservation as well as a vigorous official program of protection of nature reserves developed over the last 40 years. However, the officialp rograms uffers fromt otal relianceo n authoritarianm anagement arrangements in which decisions are made centrally and coercion is used to implement them. At the same time, the state apparatus organises subsidized resource flows to the urbanindustrial- intensivea griculturalc omplex which promote inefficient,n on-sustainable resource-use patterns that are inimical to conservation of biodiversity. These processes are illustrated within the concrete setting of the district of Uttara Kannada in southern India. It is suggested that the interests of conservation would be served far better by an approach that withdraws the subsidies to the elite so that a much more efficient, sustainable and equitable pattern of resource use, compatible with conservation of biodiversity, can be instituted. In conjunction with this, the larger society should involve local people in working out detailed plans for conservation of biodiversity and offer them adequate authority as well as appropriate financial incentives to implement these plans. The paper goes on to illustrate how such an approach may be implemented in the case of Uttara Kannada.
Resumo:
In Ge-As-Te system, the glass forming region determined by normal melt quenching method has two regions (GFR I and GFR II) separated by few compositions gap. With a simple laboratory built twin roller apparatus, we have succeeded in preparing Ge7.5AsxTe92.5-x glasses over extended composition ranges. A distinct change in T-g is observed at x = 40, exactly at which the separation of the glass forming regions occur indicating the changes in the connectivity and the rigidity of the structural network. The maximum observed in glass transition (T-g) at x = 55 corresponding to the average coordination number (Z(av)) = 2.70 is an evidence for the shift of the rigidity percolation threshold (RPT) from Z(av) = 2.40 as predicted by the recent theories. The glass forming tendency (K-gl) and Delta T (=T-c-T-g) is low for the glasses in the GFR I and high for the glasses in the GFR II.
Resumo:
The pulse-echo apparatus, designed and constructed by the author, has been used to reinvestigate the elastic properties of the eighteen optical glasses. The elastic constants are correct to 0·5%. The results are compared with the earlier investigation which utilised the optical method. The possible causes for large discrepancies observed are critically and briefly discussed. A qualitative interpretation of the results has been successfully attempted. The acoustic velocity increases with the decrease in lead and barium oxides and with increase in calcium oxide and boron trioxide components.
Resumo:
The standard Gibbs energies of formation of RuO2 and OsO2 at high temperature have been determined with high precision, using a novel apparatus that incorporates a buffer electrode between the reference and working electrodes, The buffer electrode absorbs the electrochemical flux of oxygen through the solid electrolyte from the electrode with higher oxygen chemical potential to the electrode with lower oxygen potential, The buffer electrode prevents polarization of the measuring electrode and ensures accurate data, The standard Gibbs energies of formation (Delta(f)G degrees) of RuO2, in the temperature range of 900-1500 K, and OsO2, in the range of 900-1200 K, can be represented by the equations Delta(f)G degrees(RuO2)(J/mol) = -324 720 + 354.21T - 23.490T In T Delta(f)G degrees(OsO2)(J/mol) = -304 740 + 318.80T - 18.444T In T where the temperature T is given in Kelvin and the deviation of the measurement is +/- 80 J/mol, The high-temperature heat ;capacities of RuO2 and OsO2 are measured using differential scanning calorimetry. The information for both the low- and high-temperature heat rapacity of RuO2 is coupled with the Delta(f)G degrees data obtained in this study to evaluate the standard enthalpy of formation of RuO2 at 298.15 K (Delta(f)H degrees(298.15K)). The low-temperature heat capacity of OsO2 has not been measured: therefore, the standard enthalpy and entropy of formation of OsO2 at 298.15 K (Delta(f)H degrees(298.15K) and S degrees(298.15K), respectively) are derived simultaneously through an optimization procedure from the high-temperature heat capacity and the Gibbs energy of formation. Both Delta fH degrees(298.15K) and S degrees(298.15K) are treated as variables in the optimization routine, For RuO2, the standard enthalpy of formation at 298.15 K is Delta fH degrees(298.15K) (RuO2) -313.52 +/- 0.08 kJ/mol, and that for OsO2 is Delta(f)H degrees(298.15K) (OSO2) = -295.96 +/- 0.08 kJ/mol. The standard entropy of OsO2 at 298.15 K that has been obtained from the optimization is given as S degrees(298.15K) (OsO2) = 49.8 +/- 0.2 J (mol K)(-1).
Resumo:
A decade ago, Budakian and Putterman [Phys. Rev. Lett. 85, 1000 (2000)] ascribed friction to the formation of bonds arising from contact charging when a gold tip of a surface force apparatus was dragged on polymethylmethacrylate surface. We propose a stick-slip model that captures the observed correlation between stick-slip events and charge transfer, and the lack of dependence of the scale factor connecting the force jumps and charge transfer on normal load. Here, stick-slip dynamics arises as a competition between the viscoelastic and plastic deformation time scales and that due to the pull speed with contact charging playing a minor role. Our model provides an alternate basis for explaining most experimental results without ascribing friction to contact charging.
Resumo:
Frequency response analysis is critical in understanding the steady and transient state behavior of any electrical network. Network analyzeror frequency response analyzer is used to determine the frequency response of an electrical network. This paper deals with the design of an inexpensive digitally controlled Network Analyzer. The frequency range of the network analyzer is from 10Hz to 50kHz (suitable range for system studies on most power electronics apparatus). It is composed of a microcontroller (as central processing unit) and a personal computer (as analyzer and display). The communication between the microcontroller and personal computer is established through one of the USB ports. The testing and evaluation of the analyzer is done with RC, RLC and multi-resonant circuits. The design steps, basis of analysis, experimental results, limitation in bandwidth and possible techniques for improvement in performances are presented.
Resumo:
Three distinct mechanisms — sliding, bonding and bearing — for the mobilisation of interfacial friction have been identified. In the light of these mechanisms, the effect of variation in reinforcement parameters, such as extensibility, flexibility and hardness on mobilisation of interfacial friction, and the mechanisms themselves has been examined. The influence of boundary effects of apparatus on the interfacial friction has been discussed and a method of estimating the same in a pull-out box has been proposed.
Resumo:
In the present investigation, experiments were conducted by unidirectional sliding of pins made of FCC metals (Pb, Al, and Cu) with significantly different hardness values against the steel plates of various surface textures and roughness using an inclined pin-on-plate sliding apparatus in ambient conditions under both the dry and lubricated conditions. For a given material pair, it was observed that transfer layer formation and the coefficient of friction along with its two components, namely adhesion and plowing, are controlled by the surface texture of the harder mating surfaces and are less dependent of surface roughness (R (a)) of the harder mating surfaces. The effect of surface texture on the friction was attributed to the variation of the plowing component of friction for different surfaces. It was also observed that the variation of plowing friction as a function of hardness depends on surface textures. More specifically, the plowing friction varies with hardness of the soft materials for a given type of surface texture and it is independent of hardness of soft materials for other type of surface texture. These variations could be attributed to the extent of plane strain conditions taking place at the asperity level during sliding. It was also observed that among the surface roughness parameters, the mean slope of the profile, Delta (a), correlated best with the friction. Furthermore, dimensionless quantifiable roughness parameters were formulated to describe the degree of plowing taking place at the asperity level.
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
The phase relations in the system Cu-Ho-O have been determined at 1300 K using X-ray diffraction, optical microscopy, and electron microprobe analysis of samples equilibrated in evacuated quartz ampules and in pure oxygen. Only one ternary compound, Cu2Ho2O5, was found to be stable. The Gibbs free energy of formation of this compound has been measured using the solid-state cell Pt,Cu2O + Cu2Ho2O5 + Ho2O3/(Y2O3)ZrO2/CuO + Cu2O,Pt in the temperature range of 973 to 1350 K. For the formation of Cu2Ho2O5 from its binary component oxides, 2CuO(s) + Ho2O3(S) --> Cu2Ho2O5(s) DELTAG-degrees = 11190 - 13.8T(+/- 120) J-mol-1 Since the formation is endothermic, CU2Ho2O5 becomes thermodynamically unstable with respect to CuO and Ho2O3 below 810 K. When the oxygen partial pressure over Cu2Ho2O5 is lowered, it decomposes according to the reaction 2Cu2Ho2O5(s) --> 2Ho2O3(s) + 2Cu2O(S) + O2(g) for which the equilibrium oxygen potential is given by DELTAmu(O2) = - 238510 + 160.2T(+/- 450) J.mol-1 The decomposition temperature at an oxygen partial pressure of 1.52 x 10(4) Pa was measured using a combined DTA-TGA apparatus. Based on these results, an oxygen potential diagram for the system Cu-Ho-O at 1300 K is presented.
Resumo:
The equilibrium decomposition temperatures of Cu2Ln2O5 (Ln = Tb, Dy, Ho, Er, Tm, Yb, and Lu) compounds have been measured using a combined DTA-TGA apparatus under a flowing Ar + O2 gas mixture, in which the partial pressure of oxygen was controlled at 5.0 × 103 Pa. The Cu2Ln2O5 compounds yield Ln2O3 and Cu2O on decomposition. The decomposition temperature increases monotonically with the atomic number of the lanthanide element. This suggests that the stability of the Cu2Ln2O5 compounds with respect to the component binary oxides increases with decreasing radius of the Ln3+ ion.
Resumo:
Nanocrystalline alpha-alumina was synthesized in an indigenously built ultrasonic flame pyrolysis (UFP) setup. This paper describes the technical aspects of the apparatus and particle formation in the flame. Ultrasonically atomized aluminium nitrate dissolved in methanol-water mixture was pyrolyzed in an oxy-propane flame for yielding nanocrystalline alpha-alumina. The formation of nanophase alumina was confirmed by powder XRD analysis. Scanning electron microscopy (SEM) analysis was carried out to study particulate morphology. (C) 2003 Elsevier Science Ltd. All rights reserved.