246 resultados para X-ray method
Resumo:
The crystal structures of two ternary metal nucleotide complexes of cobalt, [Co(en)2(H2O)2]-[Co(5?-IMP)2(H2O)4]Cl2·4H2O (1) and [Co(en)2(H2O)2][Co(5?-GMP)2(H2O)4]Cl2·4H2O (2), have been analysed by X-ray diffraction (en = ethylenediamine, 5?-IMP = inosine 5?-monophosphate, and 5?-GMP = guanosine 5?-monophosphate). Both complexes crystallize in the orthorhombic space group C2221 with a= 8.725(1), b= 25.891(5), c= 21.212(5)Å, Z= 4 for (1) and a= 8.733(2), b= 26.169(4), c= 21.288(4)Å, Z= 4 for (2). The structure of (1) was solved by the heavy-atom method, while that of (2) was deduced from (1). The structures were refined to R values of 0.09 and 0.10 for 1 546 and 1 572 reflections for (1) and (2) respectively. The two structures are isomorphous. A novel feature is that the chelate ligand en and the nucleotide are not co-ordinated to the same metal ion. One of the metal ions lying on the two-fold a axis is octahedrally co-ordinated by two chelating en molecules and two water oxygens, while the other on the two-fold b axis is octahedrally co-ordinated by two N(7) atoms of symmetry-related nucleotides in a cis position and four water oxygens. The conformations of the nucleotides are C(2?)-endo, anti, and gauche�gauche. In both (1) and (2) the charge-neutralising chloride ions are disordered in the vacant space between the molecules. These structures bear similarities to the mode of nucleotide co-ordination to PtII complexes of 6-oxopurine nucleotides, which are the proposed models for intrastrand cross-linking in DNA by a metal complex.
Resumo:
Single crystals of potassium hydrogen phthalate (KAP) have been grown by slow evaporation method from aqueous solutions. Thermal analyses indicate that KAP crystals decompose into phthalic anhydride and KOH around 520 K. Electrical properties of single crystals of KAP have been studied along with the effect of X-ray irradiation of the crystals. The electrical transport appears to be associated with tunneling of protons. The irradiated crystal exhibits lower dielectric constant and higher ac conductivity.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
Low-humidity monoclinic lysozyme, resulting from a water-mediated transformation, has one of the lowest solvent contents (22% by volume) observed in a protein crystal. Its structure has been solved by the molecular replacement method and refined to an R value of 0.175 for 7684 observed reflections in the 10–1.75 Å resolution shell. 90% of the solvent in the well ordered crystals could be located. Favourable sites of hydration on the protein surface include side chains with multiple hydrogen-bonding centres, and regions between short hydrophilic side chains and the main-chain CO or NH groups of the same or nearby residues. Major secondary structural features are not disrupted by hydration. However, the free CO groups at the C terminii and, to a lesser extent, the NH groups at the N terminii of helices provide favourable sites for water interactions, as do reverse turns and regions which connect β-structure and helices. The hydration shell consists of discontinuous networks of water molecules, the maximum number of molecules in a network being ten. The substrate-binding cleft is heavily hydrated, as is the main loop region which is stabilized by water interactions. The protein molecules are close packed in the crystals with a molecular coordination number of 14. Arginyl residues are extensively involved in intermolecular hydrogen bonds and water bridges. The water molecules in the crystal are organized into discrete clusters. A distinctive feature of the clusters is the frequent occurrence of three-membered rings. The protein molecules undergo substantial rearrangement during the transformation from the native to the low-humidity form. The main-chain conformations in the two forms are nearly the same, but differences exist in the side-chain conformation. The differences are particularly pronounced in relation to Trp 62 and Trp 63. The shift in Trp 62 is especially interesting as it is also known to move during inhibitor binding.
Resumo:
Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Resumo:
Anomalous X-ray scattering (AXS) has been applied to study the structure of amorphous platinum disulfide, Pt1-xS2, prepared by the precipitation process. The local atomic arrangement in amorphous Pt1-xS2 was determined by the least-squares variational method so as to reproduce the experimental differential interference function at the Pt L(III) absorption edge by the AXS method as well as the ordinary interference function by MoK alpha. The structural unit in amorphous Pt1-xS2 is found to be a PtS6 octahedron, similar to that in crystalline PtS2. These octahedra share both their corners and edges, while only edge-sharing linkages occur in crystalline PtS2.
Resumo:
The anomalous X-ray scattering (AXS) method using Cu and Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (CuI)(0.3)(Cu2O)(0.35)(MoO3)(0.35). The possible atomic arrangements in near-neighbor region of this glass were estimated by coupling the results with the least-squares analysis so as to reproduce two differential intensity profiles for Cu and Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be 6.1 at the distance of 0.187 nm. This implies that the MoO6 octahedral unit is a more probable structural entity in the glass rather than MoO4 tetrahedra which has been proposed based on infrared spectroscopy. The pre-peak shoulder observed at about 10 nm(-1) may be attributed to density fluctuation originating from the MoO6 octahedral units connected with the corner sharing linkage, in which the correlation length is about 0.8 nm. The value of the coordination number of I- around Cu+ is estimated as 4.3 at 0.261 nm, suggesting an arrangement similar to that in molten CuI.
Resumo:
The anomalous X-ray scattering (AXS) method using Mo K absorption edges has been employed for obtaining the local structural information of superionic conducting glass having the composition (AgI)(0.6)(Ag2MoO4)(0.4). The possible atomic arrangements in the near-neighbor region of this glass were estimated by coupling the results with the least-squares variational analysis so as to reproduce the differential intensity profile for Mo as well as the ordinary scattering profile. The coordination number of oxygen around Mo is found to be about 4 at the distance of 0.180 mn. This implies that the most probable structural entity in the glass is the MoO4 tetrahedral unit which has been proposed based on infrared spectroscopy. The value of the coordination number of I- around Ag+ is estimated as 4.4 at 0.287 nm, suggesting an arrangement similar to that of crystalline or molten AgI.
Resumo:
Dispersion of the liquid in a porous media is of great importance in many areas of engineering and has been studied by several researchers so far. A new experimental method has been developed to measure the dispersion coefficient. X-ray absorption technique provides a better understanding of dispersion that characterizes the mixing phenomenon in the packed beds. This is because the method is non-invasive and also it gives tracer concentration data at every point within the bed. The axial dispersion in a cylindrical bed of non-porous and non-wetting spherical particles has been measured for the flow of water. Aqueous barium chloride solution has been used a as tracer. X-ray images, recorded on a videocassette, have been analyzed using an image processing software to extract the local interstitial velocity and concentration data in the bed. Local dispersion coefficient has been determined with the help of aforementioned data. By using these data, the overall dispersion coefficient in a packed bed can also be estimated.
Resumo:
In the present work, the reaction between a molten iron drop and dense alumina was studied using the X-ray sessile-drop method under different oxygen partial pressures in the gas atmosphere. The changes in contact angles between the iron drop and the alumina substrate were followed as functions of temperature and varying partial pressures of oxygen in the temperature range 1823 to 1873 K both in static and dynamic modes. The results of the contact angle measurements with pure iron in contact with dense alumina in extremely well-purified argon as well as under different oxygen partial pressures in the gas atmosphere showed good agreement with earlier measurements reported in the literature. In the dynamic mode, when argon was replaced by a CO-CO2-Ar mixture with a well-defined PO, in the gas, the contact angle showed an initial decrease followed by a period of nearly constant contact angle. At the end of this period, the length of which was a function of the P-O2 imposed, a further steep decrease in the contact angle was noticed. An intermediate layer of FeAl2O4 was detected in the scanning electron microscope (SEM) analysis of the reacted substrates. An interesting observation in the present experiments is that the iron drop moved away from the site of the reaction once the product layer covered the interface. The results are analyzed on the basis of the various forces acting on the drop.
Crystallization and preliminary X-ray diffraction studies of sortase A from Streptococcus pneumoniae
Resumo:
Sortases are cell-membrane-anchored cysteine transpeptidases that are essential for the assembly and anchoring of cell-surface adhesins in Gram-positive bacteria. Thus, they play critical roles in virulence, infection and colonization by pathogens. Sortases have been classified into four types based on their primary sequence and the target-protein motifs that they recognize. All Gram-positive bacteria express a class A housekeeping sortase (SrtA). Sortase A from Streptococcus pneumoniae (NP_358691) has been crystallized in two crystal forms. Diamond-shaped crystals of Delta N(59)SrtA diffracted to 4.0 angstrom resolution and belonged to a tetragonal system with unit-cell parameters a = b = 122.8, c = 86.5 angstrom, alpha = beta = gamma = 90 degrees, while rod-shaped crystals of Delta N(81)SrtA diffracted to 2.91 angstrom resolution and belonged to the monoclinic space group P2(1) with unit-cell parameters a = 66.8, b = 103.47, c = 74.79 angstrom, alpha = gamma = 90, beta = 115.65 degrees. The Matthews coefficient (V(M) = 2.77 angstrom(3) Da(-1)) with similar to 56% solvent content suggested the presence of four molecules in the asymmetric unit for Delta N(81)SrtA. Also, a multi-copy search using a monomer as a probe in the molecular-replacement method resulted in the successful location of four sortase molecules in the asymmetric unit, with statistics R = 41.61, R(free) = 46.44, correlation coefficient (CC) = 64.31, CC(free) = 57.67.
Resumo:
A galactose-specific seed lectin from Spatholobous parviflorus (SPL) has been purified, crystallized and its X-ray structure solved. It is the first lectin purified and crystallized from the genus Spatholobus (family: Fabaceae). The crystals belong to the space group P1, with a = 60.792 angstrom, b = 60.998 angstrom, c = 78.179 angstrom, alpha = 78.68 degrees, beta = 88.62 degrees, gamma = 104.32 degrees. The data were collected at 2.04 angstrom resolution under cryocondition, on a MAR image-plate detector system, mounted on a rotating anode X-ray generator. The coordinates of Dolichos biflorus lectin (1lu1) were successfully used for the structure solution by molecular replacement method. The primary structure of the SPL was not known earlier and it was unambiguously visible in the electron density. S. parviflorus lectin is a hetero-dimeric-tetramer with two alpha and two beta chains of 251 and 239 residues respectively. SPL has two metal ions, Ca(2+) and Mn(2+), bound to a loop region of each chain. The SPL monomers are in jelly roll form. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The local structural information in the near-neighbor region of superionic conducting glass (AgBr)0.4(Ag2O)0.3(GeO2)0.3 has been estimated from the anomalous X-ray scattering (AXS) measurements using Ge and Br K absorption edges. The possible atomic arrangements in the near-neighbor region of this glass were obtained by coupling the results with the least-squares variational method so as to reproduce two differential intensity profiles for Ge and Br as well as the ordinary scattering profile. The coordination number of oxygen around Ge is found to be 3.6 at a distance of 0.176 nm, suggesting the GeO4 tetrahedral unit as the probable structural entity in this glass. Moreover, the coordination number of Ag around Br is estimated as 6.3 at a distance of 0.284 nm, suggesting an arrangement similar to that in crystalline AgBr.
Resumo:
Acetate kinase (AckA) catalyzes the reversible transfer of a phosphate group from acetyl phosphate to ADP, generating acetate and ATP, and plays a central role in carbon metabolism. In the present work, the gene corresponding to AckA from Salmonella typhimurium (StAckA) was cloned in the IPTG-inducible pRSET C vector, resulting in the attachment of a hexahistidine tag to the N-terminus of the expressed enzyme. The recombinant protein was overexpressed, purified and crystallized in two different crystal forms using the microbatch-under-oil method. Form I crystals diffracted to 2.70 angstrom resolution when examined using X-rays from a rotating-anode X-ray generator and belonged to the monoclinic space group C2, with unit-cell parameters a = 283.16, b = 62.17, c = 91.69 angstrom, beta = 93.57 degrees. Form II crystals, which diffracted to a higher resolution of 2.35 angstrom on the rotating-anode X-ray generator and to 1.90 angstrom on beamline BM14 of the ESRF, Grenoble, also belonged to space group C2 but with smaller unit-cell parameters (a = 151.01, b = 78.50, c = 97.48 angstrom, beta = 116.37 degrees). Calculation of Matthews coefficients for the two crystal forms suggested the presence of four and two protomers of StAckA in the asymmetric units of forms I and II, respectively. Initial phases for the form I diffraction data were obtained by molecular replacement using the coordinates of Thermotoga maritima AckA (TmAckA) as the search model. The form II structure was phased using a monomer of form I as the phasing model. Inspection of the initial electron-density maps suggests dramatic conformational differences between residues 230 and 300 of the two crystal forms and warrants further investigation.