19 resultados para Wine-growing establishment


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The question of whether the dramatic slowing down of the dynamics of glass-forming liquids near the structural glass transition is caused by the growth of one or more correlation lengths has received much attention in recent years. Several proposals have been made for both static and dynamic length scales that may be responsible for the growth of timescales as the glass transition is approached. These proposals are critically examined with emphasis on the dynamic length scale associated with spatial heterogeneity of local dynamics and the static point-to-set or mosaic length scale of the random first order transition theory of equilibrium glass transition. Available results for these length scales, obtained mostly from simulations, are summarized, and the relation of the growth of timescales near the glass transition with the growth of these length scales is examined. Some of the outstanding questions about length scales in glass-forming liquids are discussed, and studies in which these questions may be addressed are suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite decades of research, it remains to be established whether the transformation of a liquid into a glass is fundamentally thermodynamic or dynamic in origin. Although observations of growing length scales are consistent with thermodynamic perspectives, the purely dynamic approach of the Dynamical Facilitation (DF) theory lacks experimental support. Further, for vitrification induced by randomly freezing a subset of particles in the liquid phase, simulations support the existence of an underlying thermodynamic phase transition, whereas the DF theory remains unexplored. Here, using video microscopy and holographic optical tweezers, we show that DF in a colloidal glass-forming liquid grows with density as well as the fraction of pinned particles. In addition, we observe that heterogeneous dynamics in the form of string-like cooperative motion emerges naturally within the framework of facilitation. Our findings suggest that a deeper understanding of the glass transition necessitates an amalgamation of existing theoretical approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transformation of flowing liquids into rigid glasses is thought to involve increasingly cooperative relaxation dynamics as the temperature approaches that of the glass transition. However, the precise nature of this motion is unclear, and a complete understanding of vitrification thus remains elusive. Of the numerous theoretical perspectives(1-4) devised to explain the process, random first-order theory (RFOT; refs 2,5) is a well-developed thermodynamic approach, which predicts a change in the shape of relaxing regions as the temperature is lowered. However, the existence of an underlying `ideal' glass transition predicted by RFOT remains debatable, largely because the key microscopic predictions concerning the growth of amorphous order and the nature of dynamic correlations lack experimental verification. Here, using holographic optical tweezers, we freeze a wall of particles in a two-dimensional colloidal glass-forming liquid and provide direct evidence for growing amorphous order in the form of a static point-to-set length. We uncover the non-monotonic dependence of dynamic correlations on area fraction and show that this non-monotonicity follows directly from the change in morphology and internal structure of cooperatively rearranging regions(6,7). Our findings support RFOT and thereby constitute a crucial step in distinguishing between competing theories of glass formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Termite mounds are conspicuous features in many tropical ecosystems. Their shape and soil physicochemical properties have been suggested to result from the termites ecological need to control the temperature and humidity within their nests and protect themselves from predators. This study aimed to determine the influence of the parent soil properties on the shape and soil physical and chemical properties of termite mounds. Termite mounds built by the fungus-growing termite species Odontotermes obesus were compared in two forests with different soil properties (Ferralsol or Luvisol) in Southern India. Our findings confirm that soil properties influence the physicochemical characteristics of mound material and may affect the shape, but these impacts are mostly independent of the size of the mounds (i.e., the age of the colonies). Mound walls were more enriched in clay and impoverished in C and N in the Luvisol than the Ferralsol. However, their shape was more complex in the Ferralsol than the Luvisol, suggesting a possible link between the clay content in soil and the shape of termite mounds. The results also suggest that clay becomes enriched in O. obesus mound walls through a more passive process rather than solely by particle selection, and that termite mound shape results from the soil properties rather than the ecological needs of termites. In conclusion, although ecologists have mainly focused upon the influence of termite ecological needs on their nest properties, this study highlights the need for a better understanding about the role of the soil pedological properties and, as a consequence, how these properties drive the establishment and survival of termites in tropical ecosystems. (C) 2015 Elsevier B.V. All rights reserved.