296 resultados para Wave mechanics.
Resumo:
This paper presents the thermal vibration analysis of single-layer graphene sheet embedded in polymer elastic medium, using the plate theory and nonlocal continuum mechanics for small scale effects. The graphene is modeled based on continuum plate theory and axial stress caused by the thermal effects is also considered. Nonlocal governing equation of motion for this graphene sheet system is derived from the principle of virtual displacements. The closed form solution for thermal-vibration frequencies of a simply supported rectangular nanoplate has been obtained by using the Navier's method of solution. Numerical results obtained by the present theory are compared with available solutions in the literature and the molecular dynamics results. The influences of the small scale coefficient, the room or low temperature, the high temperature, the half wave number and the aspect ratio of nanoplate on the natural frequencies are considered and discussed in detail. The thermal vibration analysis of single- and double-layer graphene sheets are considered for the analysis. The mode shapes of the respective graphene system are also captured in this work. The present analysis results can be used for the design of the next generation of nanodevices that make use of the thermal vibration properties of the graphene.
Resumo:
In this work, the wave propagation analysis of built-up composite structures is performed using frequency domain spectral finite elements, to study the high frequency wave responses. The paper discusses basically two methods for modeling stiffened structures. In the first method, the concept of assembly of 2D spectral plate elements is used to model a built-up structure. In the second approach, spectral finite element method (SFEM) model is developed to model skin-stiffener structures, where the skin is considered as plate element and the stiffener as beam element. The SFEM model developed using the plate-beam coupling approach is then used to model wave propagation in a multiple stiffened structure and also extended to model the stiffened structures with different cross sections such as T-section, I-section and hat section. A number of parametric studies are performed to capture the mode coupling, that is, the flexural-axial coupling present in the wave responses.
Resumo:
In this paper, we present a new multiscale method which is capable of coupling atomistic and continuum domains for high frequency wave propagation analysis. The problem of non-physical wave reflection, which occurs due to the change in system description across the interface between two scales, can be satisfactorily overcome by the proposed method. We propose an efficient spectral domain decomposition of the total fine scale displacement along with a potent macroscale equation in the Laplace domain to eliminate the spurious interfacial reflection. We use Laplace transform based spectral finite element method to model the macroscale, which provides the optimum approximations for required dynamic responses of the outer atoms of the simulated microscale region very accurately. This new method shows excellent agreement between the proposed multiscale model and the full molecular dynamics (MD) results. Numerical experiments of wave propagation in a 1D harmonic lattice, a 1D lattice with Lennard-Jones potential, a 2D square Bravais lattice, and a 2D triangular lattice with microcrack demonstrate the accuracy and the robustness of the method. In addition, under certain conditions, this method can simulate complex dynamics of crystalline solids involving different spatial and/or temporal scales with sufficient accuracy and efficiency. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
We consider sound source mechanisms involving the acoustic and instability modes of dual-stream isothermal supersonic jets with the inner nozzle buried within an outer shroud-like nozzle. A particular focus is scattering into radiating sound waves at the shroud lip. For such jets, several families of acoustically coupled instability waves exist, beyond the regular vortical Kelvin-Helmholtz mode, with different shapes and propagation characteristics, which can therefore affect the character of the radiated sound. In our model, the coaxial shear layers are vortex sheets while the incident acoustic disturbances are the propagating shroud modes. The Wiener-Hopf method is used to compute their scattering at the sharp shroud edge to obtain the far-field radiation. The resulting far-field directivity quantifies the acoustic efficiency of different mechanisms, which is particularly important in the upstream direction, where the results show that the scattered sound is more intense than that radiated directly by the shear-layer modes.
Resumo:
Exact N-wave solutions for the generalized Burgers equation u(t) + u(n)u(x) + (j/2t + alpha) u + (beta + gamma/x) u(n+1) = delta/2u(xx),where j, alpha, beta, and gamma are nonnegative constants and n is a positive integer, are obtained. These solutions are asymptotic to the (linear) old-age solution for large time and extend the validity of the latter so as to cover the entire time regime starting where the originally sharp shock has become sufficiently thick and the viscous effects are felt in the entire N wave.
Resumo:
In order to understand the role of translational modes in the orientational relaxation in dense dipolar liquids, we have carried out a computer ''experiment'' where a random dipolar lattice was generated by quenching only the translational motion of the molecules of an equilibrated dipolar liquid. The lattice so generated was orientationally disordered and positionally random. The detailed study of orientational relaxation in this random dipolar lattice revealed interesting differences from those of the corresponding dipolar liquid. In particular, we found that the relaxation of the collective orientational correlation functions at the intermediate wave numbers was markedly slower at the long times for the random lattice than that of the liquid. This verified the important role of the translational modes in this regime, as predicted recently by the molecular theories. The single-particle orientational correlation functions of the random lattice also decayed significantly slowly at long times, compared to those of the dipolar liquid.
Resumo:
Modeling and analysis of wave propagation in elastic solids undergoing damage and growth process are reported in this paper. Two types of diagnostic problems, (1) the propagation of waves in the presence of a slow growth process and (2) the propagation of waves in the presence of a fast growth process, are considered. The proposed model employs a slow and a fast time scale and a homogenization technique in the wavelength scale. A detailed analysis of wave dispersion is carried out. A spectral analysis reveals certain low-frequency bands, where the interaction between the wave and the growth process produces acoustic metamaterial-like behavior. Various practical issues in designing an efficient method of acousto-ultrasonic wave based diagnostics of the growth process are discussed. Diagnostics of isotropic damage in a ductile or quasi-brittle solid by using a micro-second pulsating signal is considered for computer simulations, which is to illustrate the practical application of the proposed modeling and analysis. The simulated results explain how an estimate of signal spreading can be effectively employed to detect the presence of a steady-state damage or the saturation of a process.
Resumo:
Using a mixed-type Fourier transform of a general form in the case of water of infinite depth and the method of eigenfunction expansion in the case of water of finite depth, several boundary-value problems involving the propagation and scattering of time harmonic surface water waves by vertical porous walls have been fully investigated, taking into account the effect of surface tension also. Known results are recovered either directly or as particular cases of the general problems under consideration.
Resumo:
A simple equivalent circuit model for the analysis of dispersion and interaction impedance characteristics of serpentine folded-waveguide slow-wave structure was developed by considering the straight and curved portions of structure supporting the dominant TE10-mode of the rectangular waveguide. Expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam-hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was simple yet accurate in predicting the dispersion and interaction impedance behaviour at millimeter-wave frequencies. The analysis was benchmarked against measurement as well as with 3D electromagnetic modeling using MAFIA for two typical slow-wave structures (one at the Ka-band and the other at the W-band) and close agreement observed.
Resumo:
An analysis of rectangular folded-waveguide slow-wave structure was developed using conformal mapping technique through Schwarz's polygon transformation and closed form expressions for the lumped capacitance and inductance per period of the slow-wave structure were derived in terms of the physical dimensions of the structure, incorporating the effects of the beam hole in the lumped parameters. The lumped parameters were subsequently interpreted for obtaining the dispersion and interaction impedance characteristics of the structure. The analysis was benchmarked for two typical millimeter-wave structures, one operating in Ka-band and the other operating in Q-band, against measurement and 3D electromagnetic modeling using MAFIA.
Resumo:
In this paper an attempt has been made to evaluate the spatial variability of the depth of weathered and engineering bedrock in Bangalore, south India using Multichannel Analysis of Surface Wave (MASW) survey. One-dimensional MASW survey has been carried out at 58 locations and shear-wave velocities are measured. Using velocity profiles, the depth of weathered rock and engineering rock surface levels has been determined. Based on the literature, shear-wave velocity of 330 ± 30 m/s for weathered rock or soft rock and 760 ± 60 m/s for engineering rock or hard rock has been considered. Depths corresponding to these velocity ranges are evaluated with respect to ground contour levels and top surface levels have been mapped with an interpolation technique using natural neighborhood. The depth of weathered rock varies from 1 m to about 21 m. In 58 testing locations, only 42 locations reached the depths which have a shear-wave velocity of more than 760 ± 60 m/s. The depth of engineering rock is evaluated from these data and it varies from 1 m to about 50 m. Further, these rock depths have been compared with a subsurface profile obtained from a two-dimensional (2-D) MASW survey at 20 locations and a few selected available bore logs from the deep geotechnical boreholes.
Resumo:
In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.
Resumo:
We propose a new scheme for the use of constraints in setting up classical, Hamiltonian, relativistic, interacting particle theories. We show that it possesses both Poincaré invariance and invariance of world lines. We discuss the transition to the physical phase space and the nonrelativistic limit.
Resumo:
With the extension of the work of the preceding paper, the relativistic front form for Maxwell's equations for electromagnetism is developed and shown to be particularly suited to the description of paraxial waves. The generators of the Poincaré group in a form applicable directly to the electric and magnetic field vectors are derived. It is shown that the effect of a thin lens on a paraxial electromagnetic wave is given by a six-dimensional transformation matrix, constructed out of certain special generators of the Poincaré group. The method of construction guarantees that the free propagation of such waves as well as their transmission through ideal optical systems can be described in terms of the metaplectic group, exactly as found for scalar waves by Bacry and Cadilhac. An alternative formulation in terms of a vector potential is also constructed. It is chosen in a gauge suggested by the front form and by the requirement that the lens transformation matrix act locally in space. Pencils of light with accompanying polarization are defined for statistical states in terms of the two-point correlation function of the vector potential. Their propagation and transmission through lenses are briefly considered in the paraxial limit. This paper extends Fourier optics and completes it by formulating it for the Maxwell field. We stress that the derivations depend explicitly on the "henochromatic" idealization as well as the identification of the ideal lens with a quadratic phase shift and are heuristic to this extent.