32 resultados para Washington, DC
Resumo:
An overview of space-time code construction based on cyclic division algebras (CDA) is presented. Applications of such space-time codes to the construction of codes optimal under the diversity-multiplexing gain (D-MG) tradeoff, to the construction of the so-called perfect space-time codes, to the construction of optimal space-time codes for the ARQ channel as well as to the construction of codes optimal for the cooperative relay network channel are discussed. We also present a construction of optimal codes based on CDA for a class of orthogonal amplify and forward (OAF) protocols for the cooperative relay network
Resumo:
We propose for the first time two reinforcement learning algorithms with function approximation for average cost adaptive control of traffic lights. One of these algorithms is a version of Q-learning with function approximation while the other is a policy gradient actor-critic algorithm that incorporates multi-timescale stochastic approximation. We show performance comparisons on various network settings of these algorithms with a range of fixed timing algorithms, as well as a Q-learning algorithm with full state representation that we also implement. We observe that whereas (as expected) on a two-junction corridor, the full state representation algorithm shows the best results, this algorithm is not implementable on larger road networks. The algorithm PG-AC-TLC that we propose is seen to show the best overall performance.
Resumo:
This paper deals with the solution to the problem of multisensor data fusion for a single target scenario as detected by an airborne track-while-scan radar. The details of a neural network implementation, various training algorithms based on standard backpropagation, and the results of training and testing the neural network are presented. The promising capabilities of RPROP algorithm for multisensor data fusion for various parameters are shown in comparison to other adaptive techniques
Resumo:
Pervasive use of pointers in large-scale real-world applications continues to make points-to analysis an important optimization-enabler. Rapid growth of software systems demands a scalable pointer analysis algorithm. A typical inclusion-based points-to analysis iteratively evaluates constraints and computes a points-to solution until a fixpoint. In each iteration, (i) points-to information is propagated across directed edges in a constraint graph G and (ii) more edges are added by processing the points-to constraints. We observe that prioritizing the order in which the information is processed within each of the above two steps can lead to efficient execution of the points-to analysis. While earlier work in the literature focuses only on the propagation order, we argue that the other dimension, that is, prioritizing the constraint processing, can lead to even higher improvements on how fast the fixpoint of the points-to algorithm is reached. This becomes especially important as we prove that finding an optimal sequence for processing the points-to constraints is NP-Complete. The prioritization scheme proposed in this paper is general enough to be applied to any of the existing points-to analyses. Using the prioritization framework developed in this paper, we implement prioritized versions of Andersen's analysis, Deep Propagation, Hardekopf and Lin's Lazy Cycle Detection and Bloom Filter based points-to analysis. In each case, we report significant improvements in the analysis times (33%, 47%, 44%, 20% respectively) as well as the memory requirements for a large suite of programs, including SPEC 2000 benchmarks and five large open source programs.
Resumo:
There are many applications such as software for processing customer records in telecom, patient records in hospitals, email processing software accessing a single email in a mailbox etc. which require to access a single record in a database consisting of millions of records. A basic feature of these applications is that they need to access data sets which are very large but simple. Cloud computing provides computing requirements for these kinds of new generation of applications involving very large data sets which cannot possibly be handled efficiently using traditional computing infrastructure. In this paper, we describe storage services provided by three well-known cloud service providers and give a comparison of their features with a view to characterize storage requirements of very large data sets as examples and we hope that it would act as a catalyst for the design of storage services for very large data set requirements in future. We also give a brief overview of other kinds of storage that have come up in the recent past for cloud computing.
Resumo:
This paper presents a multi-class support vector machine (SVMs) approach for locating and diagnosing faults in electric power distribution feeders with the penetration of Distributed Generations (DGs). The proposed approach is based on the three phase voltage and current measurements which are available at all the sources i.e. substation and at the connection points of DG. To illustrate the proposed methodology, a practical distribution feeder emanating from 132/11kV-grid substation in India with loads and suitable number of DGs at different locations is considered. To show the effectiveness of the proposed methodology, practical situations in distribution systems (DS) such as all types of faults with a wide range of varying fault locations, source short circuit (SSC) levels and fault impedances are considered for studies. The proposed fault location scheme is capable of accurately identify the fault type, location of faulted feeder section and the fault impedance. The results demonstrate the feasibility of applying the proposed method in practical in smart grid distribution automation (DA) for fault diagnosis.
Capturability of augmented proportional navigation (APN) guidance with nonlinear engagement dynamics
Resumo:
Proportional Navigation (PN) and its variants are widely used guidance philosophies. However, in the presence of target maneuver, PN guidance law is effective only for a restrictive set of initial geometries. To account for target maneuvers, the concept of Augmented Proportional Navigation (APN) guidance law was introduced and analyzed in a linearized interceptor-target engagement framework presented in literature. However, there is no work in the literature, that addresses the capturability performance of the APN guidance law in a nonlinear engagement framework. This paper presents such an analysis and obtains the conditions for capturability. It also shows that a shorter time of interception is obtained when APN is formulated in the nonlinear framework as proposed in this paper. Simulation results are given to support the theoretical findings.
Resumo:
Terminal impact angle control is crucial for enhancement of warhead effectiveness. In the literature, this problem has been addressed in the context of targets with lower speeds than the interceptor. However, in the current defence scenario, targets of much higher speed than the interceptor is a reality. This paper presents a generic proportional navigation (PN) based guidance law, that uses the standard PN and novel Retro-PN guidance laws based on the initial engagement geometry and terminal engagement requirements, for three dimensional engagement scenario against higher speed nonmaneuvering targets to control terminal impact angle. Results are obtained on the set of achievable impact angles and conditions on the navigation constant to achieve them. Simulation results are given to support the theoretical findings.
Resumo:
This paper presents an advanced single network adaptive critic (SNAC) aided nonlinear dynamic inversion (NDI) approach for simultaneous attitude control and trajectory tracking of a micro-quadrotor. Control of micro-quadrotors is a challenging problem due to its small size, strong coupling in pitch-yaw-roll and aerodynamic effects that often need to be ignored in the control design process to avoid mathematical complexities. In the proposed SNAC aided NDI approach, the gains of the dynamic inversion design are selected in such a way that the resulting controller behaves closely to a pre-synthesized SNAC controller for the output regulation problem. However, since SNAC is based on optimal control theory, it makes the dynamic inversion controller to operate near optimal and enhances its robustness property as well. More important, it retains two major benefits of dynamic inversion: (i) closed form expression of the controller and (ii) easy scalability to command tracking application even without any apriori knowledge of the reference command. Effectiveness of the proposed controller is demonstrated from six degree-of-freedom simulation studies of a micro-quadrotor. It has also been observed that the proposed SNAC aided NDI approach is more robust to modeling inaccuracies, as compared to the NDI controller designed independently from time domain specifications.
Resumo:
Using the recently developed model predictive static programming (MPSP), a suboptimal guidance logic is presented in this paper for formation flying of small satellites. Due to the inherent nature of the problem formulation, MPSP does not require the system dynamics to be linearized. The proposed guidance scheme is valid both for high eccentricity chief satellite orbits as well as large separation distance between chief and deputy satellites. Moreover, since MPSP poses the desired conditions as a set of `hard constraints', the final accuracy level achieved is very high. The proposed guidance scheme has been tested successfully for a variety of initial conditions and for a variety of formation commands as well. Comparison with standard Linear Quadratic Regulator (LQR) solution (which serves as a guess solution for MPSP) and another nonlinear controller, State Dependent Riccati Equation (SDRE) reveals that MPSP guidance achieves the objective with higher accuracy and with lesser amount of control usage as well.
Resumo:
In this paper, we study the collective motion of individually controlled planar particles when they are coupled through heterogeneous controller gains. Two types of collective formations, synchronization and balancing, are described and analyzed under the influence of these heterogeneous controller gains. These formations are characterized by the motion of the centroid of the group of particles. In synchronized formation, the particles and their centroid move in a common direction, while in balanced formation the movement of particles possess a fixed location of the centroid. We show that, by selecting suitable controller gains, these formations can be controlled significantly to obtain not only a desired direction of motion but also a desired location of the centroid. We present the results for N-particles in synchronized formation, while in balanced formation our analysis is confined to two and three particles.
Resumo:
We consider the problem of generating a realistic coherent phantom track by a group of ECAVs (Electronic Combat Aerial Vehicles) to deceive a radar network. The phantom track considered is the trajectory of a missile guided by proportional navigation. Sufficient conditions for the existence of feasible ECAV trajectories to generate the phantom track is presented. The line-of-sight guidance law is used to control the ECAVs for practical implementation. A performance index is developed to assess the performance of the ECAVS. Simulation results for single and multiple ECAVs generating the coherent phantom track are presented.
Resumo:
A new `generalized model predictive static programming (G-MPSP)' technique is presented in this paper in the continuous time framework for rapidly solving a class of finite-horizon nonlinear optimal control problems with hard terminal constraints. A key feature of the technique is backward propagation of a small-dimensional weight matrix dynamics, using which the control history gets updated. This feature, as well as the fact that it leads to a static optimization problem, are the reasons for its high computational efficiency. It has been shown that under Euler integration, it is equivalent to the existing model predictive static programming technique, which operates on a discrete-time approximation of the problem. Performance of the proposed technique is demonstrated by solving a challenging three-dimensional impact angle constrained missile guidance problem. The problem demands that the missile must meet constraints on both azimuth and elevation angles in addition to achieving near zero miss distance, while minimizing the lateral acceleration demand throughout its flight path. Both stationary and maneuvering ground targets are considered in the simulation studies. Effectiveness of the proposed guidance has been verified by considering first order autopilot lag as well as various target maneuvers.
Resumo:
In this paper, the sliding mode control based guidance laws to intercept stationary targets at a desired impact time are proposed. Then, it is extended to constant velocity targets using the notion of predicted interception. The desired impact time is achieved by selecting the interceptor's lateral acceleration to enforce a sliding mode on a switching surface designed using non-linear engagement dynamics. Numerical simulation results are presented to validate the proposed guidance law for different initial engagement geometries, impact times and salvo attack scenarios
Resumo:
Earlier work on cyclic pursuit systems has shown that using heterogeneous gains for agents in linear cyclic pursuit, the point of convergence (rendezvous point) can be chosen arbitrarily. But there are some restrictions on this set of reachable points. The use of deviated cyclic pursuit, as discussed in this paper, expands this set of reachable points to include points which are not reachable by any known linear cyclic pursuit scheme. The limits on the deviations are determined by stability considerations. Such limits have been analytically obtained in this paper along with results on the expansion in reachable set and the latter has also been verified through simulations.