19 resultados para WATERSHEDS
Resumo:
Regional frequency analysis is widely used for estimating quantiles of hydrological extreme events at sparsely gauged/ungauged target sites in river basins. It involves identification of a region (group of watersheds) resembling watershed of the target site, and use of information pooled from the region to estimate quantile for the target site. In the analysis, watershed of the target site is assumed to completely resemble watersheds in the identified region in terms of mechanism underlying generation of extreme event. In reality, it is rare to find watersheds that completely resemble each other. Fuzzy clustering approach can account for partial resemblance of watersheds and yield region(s) for the target site. Formation of regions and quantile estimation requires discerning information from fuzzy-membership matrix obtained based on the approach. Practitioners often defuzzify the matrix to form disjoint clusters (regions) and use them as the basis for quantile estimation. The defuzzification approach (DFA) results in loss of information discerned on partial resemblance of watersheds. The lost information cannot be utilized in quantile estimation, owing to which the estimates could have significant error. To avert the loss of information, a threshold strategy (TS) was considered in some prior studies. In this study, it is analytically shown that the strategy results in under-prediction of quantiles. To address this, a mathematical approach is proposed in this study and its effectiveness in estimating flood quantiles relative to DFA and TS is demonstrated through Monte-Carlo simulation experiments and case study on Mid-Atlantic water resources region, USA. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Sacred groves are patches of forests of special spiritual significance to humans, offering also a diverse range of ecological and environmental services. We have attempted here to understand the local hydrological dynamics of a sacred forest, in terms of the benefits the village community derive, in central Western Ghats region of India. A comparative assessment has been made between two small watersheds in terms of their landscape structure (woody species composition) with soil water properties and availability of water in the respective downstream villages. The result shows that, sacred site with more primeval vegetation has close association with soil moisture in comparison to non-sacred site during dry spell of the year. The higher soil moisture ensures year long availability of water in the downstream village of the sacred site which facilitates farming of commercial crops with higher economic returns to the farmers, unlike the farmers in the other village where they face water crisis during the lean season. The study emphasizes the need for conservation endeavour on sacred groves highlighting its potential for water conservation at local and regional levels.
Resumo:
Scaling approaches are widely used by hydrologists for Regional Frequency Analysis (RFA) of floods at ungauged/sparsely gauged site(s) in river basins. This paper proposes a Recursive Multi-scaling (RMS) approach to RFA that overcomes limitations of conventional simple- and multi-scaling approaches. The approach involves identification of a separate set of attributes corresponding to each of the sites (being considered in the study area/region) in a recursive manner according to their importance, and utilizing those attributes to construct effective regional regression relationships to estimate statistical raw moments (SMs) of peak flows. The SMs are then utilized to arrive at parameters of flood frequency distribution and quantile estimate(s) corresponding to target return period(s). Effectiveness of the RMS approach in arriving at flood quantile estimates for ungauged sites is demonstrated through leave-one-out cross-validation experiment on watersheds in Indiana State, USA. Results indicate that the approach outperforms index-flood based Region-of-Influence approach, simple- and multi-scaling approaches and a multiple linear regression method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Index-flood related regional frequency analysis (RFA) procedures are in use by hydrologists to estimate design quantiles of hydrological extreme events at data sparse/ungauged locations in river basins. There is a dearth of attempts to establish which among those procedures is better for RFA in the L-moment framework. This paper evaluates the performance of the conventional index flood (CIF), the logarithmic index flood (LIF), and two variants of the population index flood (PIF) procedures in estimating flood quantiles for ungauged locations by Monte Carlo simulation experiments and a case study on watersheds in Indiana in the U.S. To evaluate the PIF procedure, L-moment formulations are developed for implementing the procedure in situations where the regional frequency distribution (RFD) is the generalized logistic (GLO), generalized Pareto (GPA), generalized normal (GNO) or Pearson type III (PE3), as those formulations are unavailable. Results indicate that one of the variants of the PIF procedure, which utilizes the regional information on the first two L-moments is more effective than the CIF and LIF procedures. The improvement in quantile estimation using the variant of PIF procedure as compared with the CIF procedure is significant when the RFD is a generalized extreme value, GLO, GNO, or PE3, and marginal when it is GPA. (C) 2015 American Society of Civil Engineers.