22 resultados para Viral carcinogenesis


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information diffusion and influence maximization are important and extensively studied problems in social networks. Various models and algorithms have been proposed in the literature in the context of the influence maximization problem. A crucial assumption in all these studies is that the influence probabilities are known to the social planner. This assumption is unrealistic since the influence probabilities are usually private information of the individual agents and strategic agents may not reveal them truthfully. Moreover, the influence probabilities could vary significantly with the type of the information flowing in the network and the time at which the information is propagating in the network. In this paper, we use a mechanism design approach to elicit influence probabilities truthfully from the agents. Our main contribution is to design a scoring rule based mechanism in the context of the influencer-influencee model. In particular, we show the incentive compatibility of the mechanisms and propose a reverse weighted scoring rule based mechanism as an appropriate mechanism to use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microglia are the resident macrophage-like populations in the central nervous system (CNS). Microglia remain quiescent, unable to perform effector and antigen presentation (APC) functions until activated by injury or infection, and have been suggested to represent the first line of defence for the CNS. Previous studies demonstrated that microglia can be persistently infected by neurotropic mouse hepatitis virus (MHV) which causes meningoencephalitis, myelitis with subsequent axonal loss, and demyelination and serve as a virus-induced model of human neurological disease multiple sclerosis (MS). Current studies revealed that MHV infection is associated with the pronounced activation of microglia during acute inflammation, as evidenced by characteristic changes in cellular morphology and increased expression of microglia-specific proteins, Iba1 (ionized calcium-binding adaptor molecule 1), which is a macrophage/microglia-specific novel calcium-binding protein and involved in membrane ruffling and phagocytosis. During chronic inflammation (day 30 postinfection), microglia were still present within areas of demyelination. Experiments performed in ex vivo spinal cord slice culture and in vitro neonatal microglial culture confirmed direct microglial infection. Our results suggest that MHV can directly infect and activate microglia during acute inflammation, which in turn during chronic inflammation stage causes phagocytosis of myelin sheath leading to chronic inflammatory demyelination.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The viral phenomenon has garnered a great deal of attention in the recent years. Although evidence of viral success exists the underlying factors leading to the phenomenon and its measurement still remains a grey area which needs to be explored. The viral phenomenon for a product or information and its distinction based on growth curve trajectory has not been rigorously explored in the previous works. This paper aims to understand the viral phenomenon that makes products or information go viral. The viral phenomenon trajectories that distinguish the viral from a non-viral phenomenon are demonstrated. The curve fitting methodology for viral phenomenon is adopted which has not been looked into in the previous works. TED talks are analyzed to understand the diffusion pattern, essentially one or more spike, within a time period. Insights drawn indicate the characteristic viral growth trajectories and its implication on innovation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For more than 30 years X-ray crystallography has been by far the most powerful approach for determining the structures of viruses and viral proteins at atomic resolution. The information provided by these structures, which covers many important aspects of the viral life cycle such as cell-receptor recognition, viral entry, nucleic acid transfer and genome replication, has extensively enriched our vision of the virus world. Many of the structures available correspond to potential targets for antiviral drugs against important human pathogens. This article provides an overview of the current knowledge of different structural aspects of the above-mentioned processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The large protein L of negative-sense RNA viruses is a multifunctional protein involved in transcription and replication of genomic RNA. It also possesses enzymatic activities involved in capping and methylation of viral mRNAs. The pathway for mRNA capping followed by the L protein of the viruses in the Morbillivirus genus has not been established, although it has been speculated that these viruses may follow the unconventional capping pathway as has been shown for some viruses of Rhabdoviridae family. We had earlier shown that the large protein L of Rinderpest virus expressed as recombinant L-P complex in insect cells as well as the ribonucleoprotein complex from purified virus possesses RNA triphosphatase (RTPase) and guanylyltransferase activities, in addition to RNA dependent RNA polymerase activity. In the present work, we demonstrate that RTPase as well as nucleoside triphosphatase (NTPase) activities are exhibited by a subdomain of the L protein in the C terminal region (a.a. 1640 1840). The RTPase activity depends absolutely on a divalent cation, either magnesium or manganese. Both the RTPase and NTPase activities of the protein show dual metal specificity. Two mutant proteins having alanine mutations in the glutamic acid residues in motif-A of the RTPase domain did not show RTPase activity, while exhibiting reduced NTPase activity suggesting overlapping active sites for the two enzymatic functions. The RTPase and NTPase activities of the L subdomain resemble those of the Vaccinia capping enzyme D1 and the baculovirus LEF4 proteins. (C) 2015 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Viral capsids derived from an icosahedral plant virus widely used in physical and nanotechnological investigations were fully dissociated into dimers by a rapid change of pH. The process was probed in vitro at high spatiotemporal resolution by time-resolved small-angle X-ray scattering using a high brilliance synchrotron source. A powerful custom-made global fitting algorithm allowed us to reconstruct the most likely pathway parametrized by a set of stoichiometric coefficients and to determine the shape of two successive intermediates by ab initio calculations. None of these two unexpected intermediates was previously identified in self-assembly experiments, which suggests that the disassembly pathway is not a mirror image of the assembly pathway. These findings shed new light on the mechanisms and the reversibility of the assembly/disassembly of natural and synthetic virus-based systems. They also demonstrate that both the structure and dynamics of an increasing number of intermediate species become accessible to experiments.