76 resultados para Vehicular ad-hoc Networks


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a dense multi-hop network of mobile nodes capable of applying adaptive power control, we consider the problem of finding the optimal hop distance that maximizes a certain throughput measure in bit-metres/sec, subject to average network power constraints. The mobility of nodes is restricted to a circular periphery area centered at the nominal location of nodes. We incorporate only randomly varying path-loss characteristics of channel gain due to the random motion of nodes, excluding any multi-path fading or shadowing effects. Computation of the throughput metric in such a scenario leads us to compute the probability density function of random distance between points in two circles. Using numerical analysis we discover that choosing the nearest node as next hop is not always optimal. Optimal throughput performance is also attained at non-trivial hop distances depending on the available average network power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a dense, ad hoc wireless network, confined to a small region. The wireless network is operated as a single cell, i.e., only one successful transmission is supported at a time. Data packets are sent between source-destination pairs by multihop relaying. We assume that nodes self-organize into a multihop network such that all hops are of length d meters, where d is a design parameter. There is a contention-based multiaccess scheme, and it is assumed that every node always has data to send, either originated from it or a transit packet (saturation assumption). In this scenario, we seek to maximize a measure of the transport capacity of the network (measured in bit-meters per second) over power controls (in a fading environment) and over the hop distance d, subject to an average power constraint. We first motivate that for a dense collection of nodes confined to a small region, single cell operation is efficient for single user decoding transceivers. Then, operating the dense ad hoc wireless network (described above) as a single cell, we study the hop length and power control that maximizes the transport capacity for a given network power constraint. More specifically, for a fading channel and for a fixed transmission time strategy (akin to the IEEE 802.11 TXOP), we find that there exists an intrinsic aggregate bit rate (Theta(opt) bits per second, depending on the contention mechanism and the channel fading characteristics) carried by the network, when operating at the optimal hop length and power control. The optimal transport capacity is of the form d(opt)((P) over bar (t)) x Theta(opt) with d(opt) scaling as (P) over bar (t) (1/eta), where (P) over bar (t) is the available time average transmit power and eta is the path loss exponent. Under certain conditions on the fading distribution, we then provide a simple characterization of the optimal operating point. Simulation results are provided comparing the performance of the optimal strategy derived here with some simple strategies for operating the network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We develop an approximate analytical technique for evaluating the performance of multi-hop networks based on beaconless IEEE 802.15.4 ( the ``ZigBee'' PHY and MAC), a popular standard for wireless sensor networks. The network comprises sensor nodes, which generate measurement packets, relay nodes which only forward packets, and a data sink (base station). We consider a detailed stochastic process at each node, and analyse this process taking into account the interaction with neighbouring nodes via certain time averaged unknown variables (e.g., channel sensing rates, collision probabilities, etc.). By coupling the analyses at various nodes, we obtain fixed point equations that can be solved numerically to obtain the unknown variables, thereby yielding approximations of time average performance measures, such as packet discard probabilities and average queueing delays. The model incorporates packet generation at the sensor nodes and queues at the sensor nodes and relay nodes. We demonstrate the accuracy of our model by an extensive comparison with simulations. As an additional assessment of the accuracy of the model, we utilize it in an algorithm for sensor network design with quality-of-service (QoS) objectives, and show that designs obtained using our model actually satisfy the QoS constraints (as validated by simulating the networks), and the predictions are accurate to well within 10% as compared to the simulation results in a regime where the packet discard probability is low. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The problem of sensor-network-based distributed intrusion detection in the presence of clutter is considered. It is argued that sensing is best regarded as a local phenomenon in that only sensors in the immediate vicinity of an intruder are triggered. In such a setting, lack of knowledge of intruder location gives rise to correlated sensor readings. A signal-space view-point is introduced in which the noise-free sensor readings associated to intruder and clutter appear as surfaces f(s) and f(g) and the problem reduces to one of determining in distributed fashion, whether the current noisy sensor reading is best classified as intruder or clutter. Two approaches to distributed detection are pursued. In the first, a decision surface separating f(s) and f(g) is identified using Neyman-Pearson criteria. Thereafter, the individual sensor nodes interactively exchange bits to determine whether the sensor readings are on one side or the other of the decision surface. Bounds on the number of bits needed to be exchanged are derived, based on communication-complexity (CC) theory. A lower bound derived for the two-party average case CC of general functions is compared against the performance of a greedy algorithm. Extensions to the multi-party case is straightforward and is briefly discussed. The average case CC of the relevant greaterthan (CT) function is characterized within two bits. Under the second approach, each sensor node broadcasts a single bit arising from appropriate two-level quantization of its own sensor reading, keeping in mind the fusion rule to be subsequently applied at a local fusion center. The optimality of a threshold test as a quantization rule is proved under simplifying assumptions. Finally, results from a QualNet simulation of the algorithms are presented that include intruder tracking using a naive polynomial-regression algorithm. 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vehicular ad hoc network (VANET) applications are principally categorized into safety and commercial applications. Efficient traffic management for routing an emergency vehicle is of paramount importance in safety applications of VANETs. In the first case, a typical example of a high dense urban scenario is considered to demonstrate the role of penetration ratio for achieving reduced travel time between source and destination points. The major requirement for testing these VANET applications is a realistic simulation approach which would justify the results prior to actual deployment. A Traffic Simulator coupled with a Network Simulator using a feedback loop feature is apt for realistic simulation of VANETs. Thus, in this paper, we develop the safety application using traffic control interface (TraCI), which couples SUMO (traffic simulator) and NS2 (network simulator). Likewise, the mean throughput is one of the necessary performance measures for commercial applications of VANETs. In the next case, commercial applications have been considered wherein the data is transferred amongst vehicles (V2V) and between roadside infrastructure and vehicles (I2V), for which the throughput is assessed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile ad-hoc networks (MANETs) have recently drawn significant research attention since they offer unique benefits and versatility with respect to bandwidth spatial reuse, intrinsic fault tolerance, and low-cost rapid deployment. This paper addresses the issue of delay sensitive realtime data transport in these type of networks. An effective QoS mechanism is thereby required for the speedy transport of the realtime data. QoS issue in MANET is an open-end problem. Various QoS measures are incorporated in the upperlayers of the network, but a few techniques addresses QoS techniques in the MAC layer. There are quite a few QoS techniques in the MAC layer for the infrastructure based wireless network. The goal and the challenge is to achieve a QoS delivery and a priority access to the real time traffic in adhoc wireless environment, while maintaining democracy in the resource allocation. We propose a MAC layer protocol called "FCP based FAMA protocol", which allocates the channel resources to the needy in a more democratic way, by examining the requirements, malicious behavior and genuineness of the request. We have simulated both the FAMA as well as FCP based FAMA and tested in various MANET conditions. Simulated results have clearly shown a performance improvement in the channel utilization and a decrease in the delay parameters in the later case. Our new protocol outperforms the other QoS aware MAC layer protocols.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ad hoc networks are being used in applications ranging from disaster recovery to distributed collaborative entertainment applications. Ad hoc networks have become one of the most attractive solution for rapid deployment of interconnecting large number of mobile personal devices. The user community of mobile personal devices are demanding a variety of value added multimedia entertainment services. The popularity of peer group is increasing and one or some members of the peer group need to send data to some or all members of the peer group. The increasing demand for group oriented value added services is driving for efficient multicast service over ad hoc networks. Access control mechanisms need to be deployed to provide guarantee that the unauthorized users cannot access the multicast content. In this paper, we present a topology aware key management and distribution scheme for secure overlay multicast over MANET to address node mobility related issues for multicast key management. We use overlay approach for key distribution and our objective is to keep communication overhead low for key management and distribution. We also incorporate reliability using explicit acknowledgments with the key distribution scheme. Through simulations we show that the proposed key management scheme has low communication overhead for rekeying and improves the reliability of key distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TCP attacks are the major problem faced by Mobile Ad hoc Networks (MANETs) due to its limited network and host resources. Attacker traceback is a promising solution which allows a victim to identify the exact location of the attacker and hence enables the victim to take proper countermeasure near attack origins, for forensics and to discourage attackers from launching the attacks. However, attacker traceback in MANET is a challenging problem due to dynamic network topology, limited network and host resources such as memory, bandwidth and battery life. We introduce a novel method of TCP attacker Identification in MANET using the Traffic History - MAITH. Based on the comprehensive evaluation based on simulations, we showed that MAITH can successfully track down the attacker under diverse mobile multi-hop network environment with low communication, computation, and memory overhead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile ad hoc networks (MANETs) is one of the successful wireless network paradigms which offers unrestricted mobility without depending on any underlying infrastructure. MANETs have become an exciting and im- portant technology in recent years because of the rapid proliferation of variety of wireless devices, and increased use of ad hoc networks in various applications. Like any other networks, MANETs are also prone to variety of attacks majorly in routing side, most of the proposed secured routing solutions based on cryptography and authentication methods have greater overhead, which results in latency problems and resource crunch problems, especially in energy side. The successful working of these mechanisms also depends on secured key management involving a trusted third authority, which is generally difficult to implement in MANET environ-ment due to volatile topology. Designing a secured routing algorithm for MANETs which incorporates the notion of trust without maintaining any trusted third entity is an interesting research problem in recent years. This paper propose a new trust model based on cognitive reasoning,which associates the notion of trust with all the member nodes of MANETs using a novel Behaviors-Observations- Beliefs(BOB) model. These trust values are used for detec- tion and prevention of malicious and dishonest nodes while routing the data. The proposed trust model works with the DTM-DSR protocol, which involves computation of direct trust between any two nodes using cognitive knowledge. We have taken care of trust fading over time, rewards, and penalties while computing the trustworthiness of a node and also route. A simulator is developed for testing the proposed algorithm, the results of experiments shows incorporation of cognitive reasoning for computation of trust in routing effectively detects intrusions in MANET environment, and generates more reliable routes for secured routing of data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Authentication protocols are very much essential for secure communication in mobile ad hoc networks (MANETs). A number of authentication protocols for MANETs have been proposed in the literature which provide the basic authentication service while trying to optimize their performance and resource consumption parameters. A problem with most of these protocols is that the underlying networking environment on which they are applicable have been left unspecified. As a result, lack of specifications about the networking environments applicable to an authentication protocol for MANETs can mislead about the performance and the applicability of the protocol. In this paper, we first characterize networking environment for a MANET as its 'Membership Model' which is defined as a set of specifications related to the 'Membership Granting Server' (MGS) and the 'Membership Set Pattern' (MSP) of the MANET. We then identify various types of possible membership models for a MANET. In order to illustrate that while designing an authentication protocol for a MANET, it is very much necessary to consider the underlying membership model of the MANET, we study a set of six representative authentication protocols, and analyze their applicability for the membership models as enumerated in this paper. The analysis shows that the same protocol may not perform equally well in all membership models. In addition, there may be membership models which are important from the point of view of users, but for which no authentication protocol is available.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile Ad hoc Networks (MANETs) having strikingly superior features also come with notable disadvantage and troubles and the most exigent amongst all being security related issues. Such an ringent network dexterously pave approach for the malicious nodes. Hence providing security is a tedious task. For such a dynamic environment, a security system which dynamically observes the attacker's plans and protect the highly sophisticated resources is in high demand. In this paper we present a method of providing security against wormhole attacks to a MANET by learning about the environment dynamically and adapting itself to avoid malicious nodes. We accomplish this with the assistance of Honeypot. Our method predicts the wormhole attack that may take place and protect the resources well-in advance. Also it cleverly deal with the attacker by using previous history and different type of messages to locate the attacker. Several experiments suggest that the system is accurate in handling wormhole attack.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The basic requirements for secure communication in a vehicular ad hoc network (VANET) are anonymous authentication with source non-repudiation and integrity. The existing security protocols in VANETs do not differentiate between the anonymity requirements of different vehicles and the level of anonymity provided by these protocols is the same for all the vehicles in a network. To provide high level of anonymity, the resource requirements of security protocol would also be high. Hence, in a resource constrained VANET, it is necessary to differentiate between the anonymity requirements of different vehicles and to provide the level of anonymity to a vehicle as per its requirement. In this paper, we have proposed a novel protocol for authentication which can provide multiple levels of anonymity in VANETs. The protocol makes use of identity based signature mechanism and pseudonyms to implement anonymous authentication with source non-repudiation and integrity. By controlling the number of pseudonyms issued to a vehicle and the lifetime of each pseudonym for a vehicle, the protocol is able to control the level of anonymity provided to a vehicle. In addition, the protocol includes a novel pseudonym issuance policy using which the protocol can ensure the uniqueness of a newly generated pseudonym by checking only a very small subset of the set of pseudonyms previously issued to all the vehicles. The protocol cryptographically binds an expiry date to each pseudonym, and in this way, enforces an implicit revocation for the pseudonyms. Analytical and simulation results confirm the effectiveness of the proposed protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our work is motivated by impromptu (or ``as-you-go'') deployment of wireless relay nodes along a path, a need that arises in many situations. In this paper, the path is modeled as starting at the origin (where there is the data sink, e.g., the control center), and evolving randomly over a lattice in the positive quadrant. A person walks along the path deploying relay nodes as he goes. At each step, the path can, randomly, either continue in the same direction or take a turn, or come to an end, at which point a data source (e.g., a sensor) has to be placed, that will send packets to the data sink. A decision has to be made at each step whether or not to place a wireless relay node. Assuming that the packet generation rate by the source is very low, and simple link-by-link scheduling, we consider the problem of sequential relay placement so as to minimize the expectation of an end-to-end cost metric (a linear combination of the sum of convex hop costs and the number of relays placed). This impromptu relay placement problem is formulated as a total cost Markov decision process. First, we derive the optimal policy in terms of an optimal placement set and show that this set is characterized by a boundary (with respect to the position of the last placed relay) beyond which it is optimal to place the next relay. Next, based on a simpler one-step-look-ahead characterization of the optimal policy, we propose an algorithm which is proved to converge to the optimal placement set in a finite number of steps and which is faster than value iteration. We show by simulations that the distance threshold based heuristic, usually assumed in the literature, is close to the optimal, provided that the threshold distance is carefully chosen. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clock synchronization in wireless sensor networks (WSNs) assures that sensor nodes have the same reference clock time. This is necessary not only for various WSN applications but also for many system level protocols for WSNs such as MAC protocols, and protocols for sleep scheduling of sensor nodes. Clock value of a node at a particular instant of time depends on its initial value and the frequency of the crystal oscillator used in the sensor node. The frequency of the crystal oscillator varies from node to node, and may also change over time depending upon many factors like temperature, humidity, etc. As a result, clock values of different sensor nodes diverge from each other and also from the real time clock, and hence, there is a requirement for clock synchronization in WSNs. Consequently, many clock synchronization protocols for WSNs have been proposed in the recent past. These protocols differ from each other considerably, and so, there is a need to understand them using a common platform. Towards this goal, this survey paper categorizes the features of clock synchronization protocols for WSNs into three types, viz, structural features, technical features, and global objective features. Each of these categories has different options to further segregate the features for better understanding. The features of clock synchronization protocols that have been used in this survey include all the features which have been used in existing surveys as well as new features such as how the clock value is propagated, when the clock value is propagated, and when the physical clock is updated, which are required for better understanding of the clock synchronization protocols in WSNs in a systematic way. This paper also gives a brief description of a few basic clock synchronization protocols for WSNs, and shows how these protocols fit into the above classification criteria. In addition, the recent clock synchronization protocols for WSNs, which are based on the above basic clock synchronization protocols, are also given alongside the corresponding basic clock synchronization protocols. Indeed, the proposed model for characterizing the clock synchronization protocols in WSNs can be used not only for analyzing the existing protocols but also for designing new clock synchronization protocols. (C) 2014 Elsevier B.V. All rights reserved.