96 resultados para Van der Waals forces


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesive forces between two approaching asperities will deform the asperities, and under certain conditions this will result in a sudden runaway deformations leading to a jump-to-contact instability. We present finite element-based numerical studies on adhesion-induced deformation and instability in asperities. We consider the adhesive force acting on an asperity, when it is brought near a rigid half-space, due to van der Waals interaction between the asperity and the half-space. The adhesive force is considered to be distributed over the volume of the asperity (body force), thus resulting in more realistic simulations for the length scales considered. Iteration scheme based on a ``residual stress update'' algorithm is used to capture the effect of deformation on the adhesion force, and thereby the equilibrium configuration and the corresponding force. The numerical results are compared with the previous approximate analytical solutions for adhesion force, deformation of the asperity and adhesion-induced mechanical instability (jump-to-contact). It is observed that the instability can occur at separations much higher,and could possibly explain the higher value of instability separation observed in experiments. The stresses in asperities, particularly in case of small ones, are found to be high enough to cause yielding before jump -to-contact. The effect of roughness is considered by modeling a spherical protrusion on the hemispherical asperity.This small-scale roughness at the tip of the asperities is found to control the deformation behavior at small separations, and hence are important in determining the friction and wear due to the jump-to-contact instability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesion can cause energy losses in asperities or particles coming into dynamic contact resulting in frictional dissipation, even if the deformation occurring is purely elastic. Such losses are of special significance in impact of nanoparticles and friction between surfaces under low contact pressure to hardness ratio. The objective of this work is to study the effect of adhesion during the normal impact of elastic spheres on a rigid half-space, with an emphasis on understanding the mechanism of energy loss. We use finite element method for modeling the impact phenomenon, with the adhesion due to van der Waals force and the short-range repulsion included as body forces distributed over the volume of the sphere. This approach, in contrast with commonly used surface force approximation, helps to model the interactions in a more precise way. We find that the energy loss in impact of elastic spheres is negligible unless there are adhesion-induced instabilities. Significant energy loss through elastic stress waves occurs due to jump-to-contact and jump-out-of-contact instabilities and can even result in capture of the elastic sphere on the half-space.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the paper, the well known Adomian Decomposition Method (ADM) is modified to solve the parabolic equations. The present method is quite different than the numerical method. The results are compared with the existing exact or analytical method. The already known existing Adomian Decomposition Method is modified to improve the accuracy and convergence. Thus, the modified method is named as Modified Adomian Decomposition Method (MADM). The Modified Adomian Decomposition Method results are found to converge very quickly and are more accurate compared to ADM and numerical methods. MADM is quite efficient and is practically well suited for use in these problems. Several examples are given to check the reliability of the present method. Modified Adomian Decomposition Method is a non-numerical method which can be adapted for solving parabolic equations. In the current paper, the principle of the decomposition method is described, and its advantages are shown in the form of parabolic equations. (C) 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conventional solids are prepared from building blocks that are conceptually no larger than a hundred atoms. While van der Waals and dipole-dipole interactions also influence the formation of these materials, stronger interactions, referred to as chemical bonds, play a more decisive role in determining the structures of most solids. Chemical bonds that hold such materials together are said to be ionic, covalent, metallic, dative, or otherwise a combination of these. Solids that utilize semiconductor nanocrystal quantum dots as building units have been demonstrated to exist; however, the interparticle forces in such materials are decidedly not chemical. Here we demonstrate the formation of charge transfer states in a binary quantum dot mixture. Charge is observed to reside in quantum confined states of one of the participating quantum dots. These interactions lead to materials that may be regarded as the nanoscale analog of an ionic solid. The process by which these materials form has interesting parallels to chemical reactions in conventional chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, wave propagation in multi-walled carbon nanotubes (MWNTs) are studied by modeling them as continuum multiple shell coupled through van der Waals force of interaction. The displacements, namely, axial, radial and circumferential displacements vary along the circumferential direction. The wave propagation are simulated using the wavelet based spectral finite element (WSFE) method. This technique involves Daubechies scaling function approximation in time and spectral element approach. The WSFE Method allows the study of wave properties in both time and frequency domains. This is in contrast to the conventional Fourier transform based analysis which are restricted to frequency domain analysis. Here, first, the wavenumbers and wave speeds of carbon nanotubes (CNTs) are Studied to obtain the characteristics of the waves. These group speeds have been compared with those reported in literature. Next, the natural frequencies of a single-walled carbon nanotube (SWNT) are studied for different values of the radius. The frequencies of the first five modes vary linearly with the radius of the SWNT. Finally, the time domain responses are simulated for SWNT and three-walled carbon nanotubes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the title compound, C23H26O3, the three six-membered rings of the xanthene system are non-planar, having total puckering amplitudes, QT, of 0.443 (2), 0.202 (2) and 0.449 (2) Å. The central ring adopts a boat conformation and the outer rings adopt sofa conformations. The crystal structure is stabilized by van der Waals interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An A-DNA type double helical conformation was observed in the single crystal X-ray structure of the octamer d(G-G-T-A-T-A-C-C), 1, and its 5-bromouracil-containing analogue, 2. The structure of the isomorphous crystals (space group P61) was solved by a search technique based on packing criteria and R-factor calculations, with use of only low order data. At the present stage of refinement the R factors are 31 % for 1 and 28 % for 2 at a resolution of 2.25 A (0.225 nm). The molecules interact through their minor grooves by hydrogen bonding and base to sugar van der Waals contacts. The stable A conformation observed in the crystal may have some structural relevance to promoter regions where the T-A-T-A sequence is frequently found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH4I crystallizes in this structure, while NH4F is found in the ZnO structure, and NH4C1 and NH4Br occur in the CsCl structure. We show that a distributed charge on the NH4+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH4+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH4F compares well with experiment. Barring the poorly understood NH4F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH4F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

M r = 188.22, monoclinic, P21/n, a = 6.219 (2), b= 10.508 (2), c=7.339 (1)A, t= 107.64 (2) °, V= 457 ,/k 3, Z = 2, D m - - 1.360 (3), D x = 1.366 (2)Mgm -3, ~,(MoKa) = 0.7107/~, #= 0.053 mm -I, F(000) = 200, T= 293 K. Final R = 5.8% for 614 significant reflections. The molecule, which does not possess a centre of symmetry, occupies a crystallographic centre of symmetry because of the statistical enantiomeric and rotational disorder. Latticeenergy calculations, based on van der Waals attractive and repulsive potentials, clearly show minima at the observed disordered positions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crystal and molecular structure of a compound 4-cyanobiphenyl-4'-heptylbiphenyl carboxylate (7CBB), which exhibit both monolayer smectic A and nematic phases, have been determined by direct methods using single crystal X-ray diffraction data. The structure is monoclinic with the space group P21/c and Z = 4. The unit cell parameters are a = 16.9550(5) Aring, b = 5.5912(18) Aring, c = 27.5390(9) Aring, agr = 90.000°, β = 93.986(6)°, and γ = 90.000°. Packing of the molecules is found to be precursor to SmC phase, although SmA1 phase is observed on melting. Several strong van der Waals interactions are observed in the core part of the neighboring molecular pairs. Crystal to mesophase transition is probably of reconstitutive nature. Geometry, packing, and nature of crystal-mesophase transition are compared to those in 6CBB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A comparison with the alkali halides suggests that all the ammonium halides should occur in the NaCl centre-of-mass structure. Experimentally, at room temperature and atmospheric pressure, only NH,1 crystallizes in this structure, while NH,F is found in the ZnO structure, and NH&I and NH,Br occur in the CsCl structure. We show that a distributed charge on the NH,+ ion can explain these structures. Taking charges of + 0.2e on each of the five atoms in NH,+, as suggested by other studies, we have recomputed the Madelung energy in the cases of interest. A full ionic theory including electrostatic, van der Waals and repulsive interactions then explains the centre-of-mass structures of all the four ammonium halides. The thermal and pressure transitions are also explained reasonably well. The calculated phase diagram of NH,F compares well with experiment. Barring the poorly understood NH,F(II) phase, which is beyond the scope of this work, the other features are in qualitative agreement. In particular, the theory correctly predicts a pressure transition at room temperature from the ZnO structure directly to the CsCl structure without an intermediate NaCl phase. A feature of our approach is that we do not need to invoke hydrogen bonding in NH,F.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

C16H20N204, monoclinic, P21, a = 6.270 (1),b= 11.119(3),c= ll.640(4)A, fl= 100.7 (2)°,Dm = 1-27 (flotation), Dc = 1-26 Mg m -3, Z = 2. The structure has been refined to a final R value of 0.041 for 1584 independent counter-measured reflections. The oxazolone ring in the molecule is nearly planar. The exocyclic O atom is 0.065 A out of the plane defined by the other four atoms in the ring belonging to the lactone group. The difference in length between the two adjacent C-O bonds in the ring is small, but significant. The crystal structure is stabilized by van der Waals interactions and a N--H... N hydrogen bond.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New supramolecular organogels based on all-trans-tri(p-phenylenevinylene) (TPV) systems possessing different terminal groups, e.g., oxime, hydrazone, phenylhydrazone, and semicarbazone have been synthesized. The self-assembly properties of the compounds that gelate in specific organic solvents and the aggregation motifs of these molecules in the organogels were investigated using UV−vis, fluorescence, FT-IR, and 1H NMR spectroscopy, electron microscopy, differential scanning calorimetry (DSC), and rheology. The temperature variable UV−vis and fluorescence spectroscopy in different solvents clearly show the aggregation pattern of the self-assemblies promoted by hydrogen bonding, aromatic π-stacking, and van der Waals interactions among the individual TPV units. Gelation could be controlled by variation in the number of hydrogen-bonding donors and acceptors in the terminal functional groups of this class of gelators. Also wherever gelation is observed, the individual fibers in gels change to other types of networks in their aggregates depending on the number of hydrogen-bonding sites in the terminal functions. Comparison of the thermal stability of the gels obtained from DSC data of different gelators demonstrates higher phase transition temperature and enthalpy for the hydrazone-based gelator. Rheological studies indicate that the presence of more hydrogen-bonding donors in the periphery of the gelator molecules makes the gel more viscoelastic solidlike. However, in the presence of more numbers of hydrogen-bonding donor/acceptors at the periphery of TPVs such as with semicarbazone a precipitation as opposed to gelation was observed. Clearly, the choice of the end functional groups and the number of hydrogen-bonding groups in the TPV backbone holds the key and modulates the effective length of the chromophore, resulting in interesting optical properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a unified approach to repulsion in ionic and van der Waals solids based on a compressible-ion/atom model. Earlier studies have shown that repulsion in ionic crystals can be viewed as arising from the compression energy of ions, described by two parameters per ion. Here we obtain the compression parameters of the rare-gas atoms Ne. Ar. Kr and Xe by interpolation using the known parameters of related equi-electronic ions (e.g. Ar from S2-. Cl-, K- and Ca2-). These parameters fit the experimental zero-temperature interatomic distances and compressibilities of the rare-gas crystals satisfactorily. A hightemperature equation of state based on an Einstein model of thermal motions is used to calculate the thermal expansivities, compressibilities and their temperature derivatives for Ar. Kr and Xe. It is argued that an instability at higher temperatures represents the limit to which the solid can be superheated. beyond which sublimation must occur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An apolar synthetic analog of the first 10 residues at the NH2-terminal end of zervamicin IIA crystallizes in the triclinic space group P1 with cell dimensions a = 10.206 +/- 0.002 A, b = 12.244 +/- 0.002 A, c = 15.049 +/- 0.002 A, alpha = 93.94 +/- 0.01 degrees, beta = 95.10 +/- 0.01 degrees, gamma = 104.56 +/- 0.01 degrees, Z = 1, C60H97N11O13 X 2H2O. Despite the relatively few alpha-aminoisobutyric acid residues, the peptide maintains a helical form. The first intrahelical hydrogen bond is of the 3(10) type between N(3) and O(0), followed by five alpha-helix-type hydrogen bonds. Solution 1H NMR studies in chloroform also favor a helical conformation, with seven solvent-shielded NH groups. Continuous columns are formed by head-to-tail hydrogen bonds between the helical molecules along the helix axis. The absence of polar side chains precludes any lateral hydrogen bonds. Since the peptide crystallizes with one molecule in a triclinic space group, aggregation of the helical columns must necessarily be parallel rather than antiparallel. The packing of the columns is rather inefficient, as indicated by very few good van der Waals' contacts and the occurrence of voids between the molecules.