71 resultados para Value-freedom
Resumo:
Two key parameters in the outage characterization of a wireless fading network are the diversity and the degrees of freedom (DOF). These two quantities represent the two endpoints of the diversity multiplexing gain tradeoff, In this paper, we present max-flow min-cut type theorems for computing both the diversity and the DOF of arbitrary single-source single-sink networks with nodes possessing multiple antennas. We also show that an amplify-and-forward protocol is sufficient to achieve the same. The DOF characterization is obtained using a conversion to a deterministic wireless network for which the capacity was recently found. This conversion is operational in the sense that a capacity-achieving scheme for the deterministic network can be converted into a DOF-achieving scheme for the fading network. We also show that the diversity result easily extends to multisource multi-sink networks whereas the DOF result extends to a single-source multi-cast network. Along the way, we prove that the zero error capacity of the deterministic network is the same as its c-error capacity.
Resumo:
The reduction in natural frequencies,however small, of a civil engineering structure, is the first and the easiest method of estimating its impending damage. As a first level screening for health-monitoring, information on the frequency reduction of a few fundamentalmodes can be used to estimate the positions and the magnitude of damage in a smeared fashion. The paper presents the Eigen value sensitivity equations, derived from first-order perturbation technique, for typical infra-structural systems like a simply supported bridge girder, modelled as a beam, an endbearing pile, modelled as an axial rod and a simply supported plate as a continuum dynamic system. A discrete structure, like a building frame is solved for damage using Eigen-sensitivity derived by a computationalmodel. Lastly, neural network based damage identification is also demonstrated for a simply supported bridge beam, where the known-pairs of damage-frequency vector is used to train a neural network. The performance of these methods under the influence of measurement error is outlined. It is hoped that the developed method could be integrated in a typical infra-structural management program, such that magnitudes of damage and their positions can be obtained using acquired natural frequencies, synthesized from the excited/ambient vibration signatures.
Resumo:
The critical behavior of osmotic susceptibility in an aqueous electrolyte mixture 1-propanol (1P)+water (W)+potassium chloride is reported. This mixture exhibits re-entrant phase transitions and has a nearly parabolic critical line with its apex representing a double critical point (DCP). The behavior of the susceptibility exponent is deduced from static light-scattering measurements, on approaching the lower critical solution temperatures (TL’s) along different experimental paths (by varying t) in the one-phase region. The light-scattering data analysis substantiates the existence of a nonmonotonic crossover behavior of the susceptibility exponent in this mixture. For the TL far away from the DCP, the effective susceptibility exponent γeff as a function of t displays a nonmonotonic crossover from its single limit three-dimensional (3D)-Ising value ( ∼ 1.24) toward its mean-field value with increase in t. While for that closest to the DCP, γeff displays a sharp, nonmonotonic crossover from its nearly doubled 3D-Ising value toward its nearly doubled mean-field value with increase in t. The renormalized Ising regime extends over a relatively larger t range for the TL closest to the DCP, and a trend toward shrinkage in the renormalized Ising regime is observed as TL shifts away from the DCP. Nevertheless, the crossover to the mean-field limit extends well beyond t>10−2 for the TL’s studied. The observed crossover behavior is attributed to the presence of strong ion-induced clustering in this mixture, as revealed by various structure probing techniques. As far as the critical behavior in complex or associating mixtures with special critical points (like the DCP) is concerned, our results indicate that the influence of the DCP on the critical behavior must be taken into account not only on the renormalization of the critical exponent but also on the range of the Ising regime, which can shrink with decrease in the influence of the DCP and with the extent of structuring in the system. The utility of the field variable tUL in analyzing re-entrant phase transitions is demonstrated. The effective susceptibility exponent as a function of tUL displays a nonmonotonic crossover from its asymptotic 3D-Ising value toward a value slightly lower than its nonasymptotic mean-field value of 1. This behavior in the nonasymptotic, high tUL region is interpreted in terms of the possibility of a nonmonotonic crossover to the mean-field value from lower values, as foreseen earlier in micellar systems.
Resumo:
Formation of high value procurement networks involves a bottom-up assembly of complex production, assembly, and exchange relationships through supplier selection and contracting decisions, where suppliers are intelligent and rational agents who act strategically. In this paper we address the problem of forming procurement networks for items with value adding stages that are linearly arranged We model the problem of Procurement Network Formation (PNF) for multiple units of a single item as a cooperative game where agents cooperate to form a surplus maximizing procurement network and then share the surplus in a stable and fair manner We first investigate the stability of such networks by examining the conditions under which the core of the game is non-empty. We then present a protocol, based on the extensive form game realization of the core, for forming such networks so that the resulting network is stable. We also mention a key result when the Shapley value is applied as a solution concept.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
Close to the Mott transition, lattice degrees of freedom react to the softening of electron degrees of freedom. This results in a change of lattice spacing, a diverging compressibility, and a critical anomaly of the sound velocity. These effects are investigated within a simple model, in the framework of dynamical mean-field theory. The results compare favorably to recent experiments on the layered organic-conductor kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Cl. We predict that effects of a similar magnitude are expected for V2O3, despite the much larger value of the elastic modulus of this material.
Resumo:
This article proposes a three-timescale simulation based algorithm for solution of infinite horizon Markov Decision Processes (MDPs). We assume a finite state space and discounted cost criterion and adopt the value iteration approach. An approximation of the Dynamic Programming operator T is applied to the value function iterates. This 'approximate' operator is implemented using three timescales, the slowest of which updates the value function iterates. On the middle timescale we perform a gradient search over the feasible action set of each state using Simultaneous Perturbation Stochastic Approximation (SPSA) gradient estimates, thus finding the minimizing action in T. On the fastest timescale, the 'critic' estimates, over which the gradient search is performed, are obtained. A sketch of convergence explaining the dynamics of the algorithm using associated ODEs is also presented. Numerical experiments on rate based flow control on a bottleneck node using a continuous-time queueing model are performed using the proposed algorithm. The results obtained are verified against classical value iteration where the feasible set is suitably discretized. Over such a discretized setting, a variant of the algorithm of [12] is compared and the proposed algorithm is found to converge faster.
Resumo:
In this paper, we describe how to analyze boundary value problems for third-order nonlinear ordinary differential equations over an infinite interval. Several physical problems of interest are governed by such systems. The seminumerical schemes described here offer some advantages over solutions obtained by using traditional methods such as finite differences, shooting method, etc. These techniques also reveal the analytic structure of the solution function. For illustrative purposes, several physical problems, mainly drawn from fluid mechanics, are considered; they clearly demonstrate the efficiency of the techniques presented here.
Resumo:
It is well known that the numerical accuracy of a series solution to a boundary-value problem by the direct method depends on the technique of approximate satisfaction of the boundary conditions and on the stage of truncation of the series. On the other hand, it does not appear to be generally recognized that, when the boundary conditions can be described in alternative equivalent forms, the convergence of the solution is significantly affected by the actual form in which they are stated. The importance of the last aspect is studied for three different techniques of computing the deflections of simply supported regular polygonal plates under uniform pressure. It is also shown that it is sometimes possible to modify the technique of analysis to make the accuracy independent of the description of the boundary conditions.
Resumo:
Presented here is the two-phase thermodynamic (2PT) model for the calculation of energy and entropy of molecular fluids from the trajectory of molecular dynamics (MD) simulations. In this method, the density of state (DoS) functions (including the normal modes of translation, rotation, and intramolecular vibration motions) are determined from the Fourier transform of the corresponding velocity autocorrelation functions. A fluidicity parameter (f), extracted from the thermodynamic state of the system derived from the same MD, is used to partition the translation and rotation modes into a diffusive, gas-like component (with 3Nf degrees of freedom) and a nondiffusive, solid-like component. The thermodynamic properties, including the absolute value of entropy, are then obtained by applying quantum statistics to the solid component and applying hard sphere/rigid rotor thermodynamics to the gas component. The 2PT method produces exact thermodynamic properties of the system in two limiting states: the nondiffusive solid state (where the fluidicity is zero) and the ideal gas state (where the fluidicity becomes unity). We examine the 2PT entropy for various water models (F3C, SPC, SPC/E, TIP3P, and TIP4P-Ew) at ambient conditions and find good agreement with literature results obtained based on other simulation techniques. We also validate the entropy of water in the liquid and vapor phases along the vapor-liquid equilibrium curve from the triple point to the critical point. We show that this method produces converged liquid phase entropy in tens of picoseconds, making it an efficient means for extracting thermodynamic properties from MD simulations.
Resumo:
This paper makes explicit the relation between relative part position and kinematic freedom of the parts which is implicitly available in the literature. An extensive set of representative papers in the areas of assembly and kinematic modelling is reviewed to specifically identify how the ideas in the two areas are related and influencing the development of each other. The papers are categorised by the approaches followed in the specification, representation, and solution of the part relations. It is observed that the extent of the part geometry is not respected in modelling schemes and as a result, the causal flow of events (proximity–contact–mobility) during the assembling process is not realised in the existing modelling paradigms, which are focusing on either the relative positioning problem or the relative motion problem. Though an assembly is a static description of part configuration, achievement of this configuration requires availability of relative motion for bringing parts together during the assembly process. On the other hand, the kinematic freedom of a part depends on the nature of contacting regions with other parts in its static configuration. These two problems are thus related through the contact geometry. The chronology of the approaches that significantly contributed to the development of the subject is also included in the paper.
Resumo:
We present a generalized adaptive time-dependent density matrix renormalization-group (DMRG) scheme, called the double time window targeting (DTWT) technique, which gives accurate results with nominal computational resources, within reasonable computational time. This procedure originates from the amalgamation of the features of pace keeping DMRG algorithm, first proposed by Luo et al. [Phys. Rev. Lett. 91, 049701 (2003)] and the time-step targeting algorithm by Feiguin and White [Phys. Rev. B 72, 020404 (2005)]. Using the DTWT technique, we study the phenomena of spin-charge separation in conjugated polymers (materials for molecular electronics an spintronics), which have long-range electron-electron interactions and belong to the class of strongly correlated low-dimensional many-body systems. The issue of real-time dynamics within the Pariser-Parr-Pople (PPP) model which includes long-range electron correlations has not been addressed in the literature so far. The present study on PPP chains has revealed that, (i) long-range electron correlations enable both the charge and spin degree of freedom of the electron, to propagate faster in the PPP model compared to Hubbard model, (ii) for standard parameters of the PPP model as applied to conjugated polymers, the charge velocity is almost twice that of the spin velocity, and (iii) the simplistic interpretation of long-range correlations by merely renormalizing the U value of the Hubbard model fails to explain the dynamics of doped holes/electrons in the PPP model.
Resumo:
The paper proposes two methodologies for damage identification from measured natural frequencies of a contiguously damaged reinforced concrete beam, idealised with distributed damage model. The first method identifies damage from Iso-Eigen-Value-Change contours, plotted between pairs of different frequencies. The performance of the method is checked for a wide variation of damage positions and extents. The method is also extended to a discrete structure in the form of a five-storied shear building and the simplicity of the method is demonstrated. The second method is through smeared damage model, where the damage is assumed constant for different segments of the beam and the lengths and centres of these segments are the known inputs. First-order perturbation method is used to derive the relevant expressions. Both these methods are based on distributed damage models and have been checked with experimental program on simply supported reinforced concrete beams, subjected to different stages of symmetric and un-symmetric damages. The results of the experiments are encouraging and show that both the methods can be adopted together in a damage identification scenario.