338 resultados para VISCOUS SHEETS
Resumo:
Imagining a disturbance made on a compressible boundary layer with the help of a heat source, the critical viscous sublayer, through which the skin friction at any point on a surface is connected with the heat transferred from a heated element embedded in it, has been estimated. Under similar conditions of external flow (Ray1)) the ratio of the critical viscous sublayer to the undisturbed boundary layer thickness is about one-tenth in the laminar case and one hundredth in the turbulent case. These results are similar to those (cf.1)) found in shock wave boundary layer interaction problems.
Resumo:
The Upwind-Least Squares Finite Difference (LSFD-U) scheme has been successfully applied for inviscid flow computations. In the present work, we extend the procedure for computing viscous flows. Different ways of discretizing the viscous fluxes are analysed for the positivity, which determines the robustness of the solution procedure. The scheme which is found to be more positive is employed for viscous flux computation. The numerical results for validating the procedure are presented.
Resumo:
Explicit criteria for the optimum design of an untuned viscous dynamic vibration absorber are developed for the case of a viscously damped single degree of freedom springmass system. It is shown that for the particular case of an undamped main system, the results reduce to the classical ones obtained by using the concept of a fixed point on the response curve.
Resumo:
Using normal mode analysis Rayleigh-Taylor instability is investigated for three-layer viscous stratified incompressible steady flow, when the top 3rd and bottom 1st layers extend up to infinity, the middle layer has a small thickness δ. The wave Reynolds number in the middle layer is assumed to be sufficiently small. A dispersion relation (a seventh degree polynomial in wave frequency ω) valid up to the order of the maximal value of all possible Kj (j less-than-or-equals, slant 0, K is the wave number) in each coefficient of the polynomial is obtained. A sufficient condition for instability is found out for the first time, pursuing a medium wavelength analysis. It depends on ratios (α and β) of the coefficients of viscosity, the thickness of the middle layer δ, surface tension ratio T and wave number K. This is a new analytical criterion for Rayleigh-Taylor instability of three-layer fluids. It recovers the results of the corresponding problem for two-layer fluids. Among the results obtained, it is observed that taking the coefficients of viscosity of 2nd and 3rd layers same can inhibit the effect of surface tension completely. For large wave number K, the thickness of the middle layer should be correspondingly small to keep the domain of dependence of the threshold wave number Kc constant for fixed α, β and T.
Resumo:
An exact solution to the problem of time-dependent motion of a viscous fluid in an annulus with porous walls is obtained under the assumption that the rate of suction at one wall is equal to the rate of injection at the other. Finite Hankel transform is used to obtain a closed-form solution for the axial velocity. The average axial velocity profiles are depicted graphically.
Resumo:
Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.
Resumo:
Cross-strand disulfides bridge two cysteines in a registered pair of antiparallel beta-strands. A nonredundant data set comprising 5025 polypeptides containing 2311 disulfides was used to study cross-strand disulfides. Seventy-six cross-strand disulfides were found of which 75 and 1 occurred at non-hydrogen-bonded (NHB) and hydrogen-bonded (HB) registered pairs, respectively. Conformational analysis and modeling studies demonstrated that disulfide formation at HB pairs necessarily requires an extremely rare and positive chi(1) value for at least one of the cysteine residues. Disulfides at HB positions also have more unfavorable steric repulsion with the main chain. Thirteen pairs of disulfides were introduced in NHB and HB pairs in four model proteins: leucine binding protein (LBP), leucine, isoleucine, valine binding protein (LIVBP), maltose binding protein (MBP), and Top7. All mutants LIVBP T247C V331C showed disulfide formation either on purification, or on treatment with oxidants. Protein stability in both oxidized and reduced states of all mutants was measured. Relative to wild type, LBP and MBP mutants were destabilized with respect to chemical denaturation, although the sole exposed NHB LBP mutant showed an increase of 3.1 degrees C in T-m. All Top7 mutants were characterized for stability through guanidinium thiocyanate chemical denaturation. Both exposed and two of the three buried NHB mutants were appreciably stabilized. All four HB Top7 mutants were destabilized (Delta Delta G(0) = -3.3 to -6.7 kcal/mol). The data demonstrate that introduction of cross-strand disulfides at exposed NHB pairs is a robust method of improving protein stability. All four exposed Top7 disulfide mutants showed mild redox activity. Proteins 2011; 79: 244-260. (C) 2010 Wiley-Liss, Inc.
Resumo:
The pulsatile flow of an incompressible viscous fluid in an elliptical pipe of slowly varying cross-section is considered. Asymptotic series solutions for the velocity distribution and pressure gradient are obtained in terms of Mathieu functions for a low Reynold number flow in which the volume flux is prescribed. An expression for shear stress on the boundary is derived. The physically significant quantities governing the flow are computed numerically and analysed for different types of constrictions. The effect of eccentricity and Womerslay parameter on the flow is discussed.
Resumo:
We have consider ed the transient motion of art electrically conducting viscous compressible fluid which is in contact with an insulated infinite disk. The initial motion is considered to be due to the uniform rotation of the disk in an otherwise stationary fluid or due to the uniform rigid rotation of the fluid over a stationary disk. Different cases of transient motion due to finite impulse imparted either to the disk or to the distant fluid have been investigated. Effects of the imposed axial magnetic field and the disk temperature on the transient flow are included. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite-difference scheme along with the Newton's linearisation technique.
Resumo:
We propose a model for concentrated emulsions based on the speculation that a macroscopic shear strain does not produce an affine deformation in the randomly close-packed droplet structure. The model yields an anomalous contribution to the complex dynamic shear modulus that varies as the square root of frequency. We test this prediction using a novel light scattering technique to measure the dynamic shear modulus, and directly observe the predicted behavior over six decades of frequency and a wide range of volume fractions.
Resumo:
As the viscosity of a liquid increases rapidly in the supercooled regime, the nature of molecular relaxation can exhibit dynamics rather different from the fast dynamics observed in the normal regime. In this article, we present theoretical studies of solvation dynamics and orientational relaxation in slow liquids. As the local short-range correlations are important in the slow liquids, we have extended our previous theory to take into account the shea-range pair correlations between the polar solute and the dipolar solvent molecules. Application of the generalized theory To the study of solvation dynamics of amide systems gives nice agreement with the experimental results of Maroncelli and co-workers (J. Phys. Chem. 1990, 94, 4929). The theory also provides valuable insight into the orientational relaxation precesses in the viscous liquids.
Resumo:
The modification of the axisymmetric viscous flow due to relative rotation of the disk or fluid by a translation of the boundary is studied. The fluid is taken to be compressible, and the relative rotation and translation velocity of the disk or fluid are time-dependent. The nonlinear partial differential equations governing the motion are solved numerically using an implicit finite difference scheme and Newton's linearisation technique. Numerical solutions are obtained at various non-dimensional times and disk temperatures. The non-symmetric part of the flow (secondary flow) describing the translation effect generates a velocity field at each plane parallel to the disk. The cartesian components of velocity due to secondary flow exhibit oscillations when the motion is due to rotation of the fluid on a translating disk. Increase in translation velocity produces an increment in the radial skin friction but reduces the tangential skin friction.
Resumo:
Peristaltic motion of two immiscible viscous incompressible fluids in a circular tube is studied in pumping and copumping ranges under long-wavelength and low-Reynolds-number assumptions. The effect of the peripheral-layer viscosity on the time-averaged flux and the mechanical efficiency is studied. The formation and growth of the trapping zone in the core and the peripheral layer are explained. It is observed that the bolus volume in the peripheral layer increases with an increase in the viscosity ratio. The limits of the time-averaged flux (Q) over bar for trapping in the core are obtained. The trapping observed in the peripheral layer decreases in size with an increase in (Q) over bar but never disappears. The development of the complete trapping of the core fluid by the peripheral-layer fluid with an increase in the time-averaged flux is demonstrated. The effect of peripheral-layer viscosity on the reflux layer is investigated. It is also observed that the reflux occurs in the entire pumping range for all viscosity ratios and it is absent in the entire range of copumping.
Resumo:
The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube