51 resultados para Urban void
Resumo:
Urban lakes form vital ecosystems supporting livelihood with social, economic and aesthetic benefits that are essential for quality life. This depends on the biotic and abiotic components in an ecosystem. The structure of an ecosystem forms a decisive factor in sustaining its functional abilities which include nutrient cycling, oxygen production, etc. A community assemblage of primary producers (algae) plays a crucial role in maintaining the balance as they form the base of energy pyramid in the ecosystem. Algae assimilate carbon in the environment via photosynthetic activities and releases oxygen for the next level of biotic elements in an ecosystem. Besides these, algal cells rich in protein serve as food and feed, used as manure and for production of biofuels. Understanding algal photosynthetic dynamics helps in assessing the level of dissolved oxygen (DO), food (fish, etc.), waste assimilation, etc. Algal chlorophyll content, algal biomass, primary productivity and algal photosynthetic quotient are some of the parameters that help in assessing the status of urban lakes. Chlorophyll content gives a measure of the growth, spread and quantity of algae. Unplanned rapid urbanization in Bangalore in recent times has resulted in either disappearance of lake ecosystems or deteriorated the lake water quality impairing the ecological processes. This paper computes algal growth, community structure, primary productivity and composition for three major lakes (T G Halli, Bellandur and Varthur lakes) under contrast levels of anthropogenic influences.
Resumo:
[1] During a comprehensive aerosol field campaign, simultaneous measurements were made of aerosol spectral optical depths, black carbon mass concentration (M-b), total (M-t) and size segregated aerosol mass concentrations over an urban continental location, Bangalore (13 degreesN, 77 degreesE, 960 m msl), in India. Large amounts of BC were observed; both in absolute terms and fraction of total mass (similar to11%) and submicron mass (similar to23%) implying a significantly low single scatter albedo. The aerosol visible optical depth (tau(p)) was in the range 0.24 to 0.45. Estimated surface forcing is as high as -23 W m(-2) and top of the atmosphere (TOA) forcing is +5 Wm(-2) during relatively cleaner periods (tau(p) similar to 0.24). The net atmospheric absorption translates to an atmospheric heating of similar to0.8 K day(-1) for cleaner periods and similar to1.5 K day(-1) for less cleaner periods (tau(p) similar to 0.45). Our observations raise several issues, which may have impacts to regional climate and monsoon.
Resumo:
Multi-year (similar to 7 years) observations of aerosol optical and microphysical properties were conducted at a tropical urban location in Bangalore, India. As a consequence of rapid urbanization, Bangalore presents high local atmospheric emissions, which makes it an interesting site to study the effect of anthropogenic activities on aerosol properties. It has been found that both column (aerosol optical depth, AOD) and ground-level measurements (black carbon (BC) and composite aerosol mass) exhibit a weekly cycle with low aerosol concentrations on weekends. In comparison to the weekdays, the weekend reductions of aerosol optical depth, black carbon and composite aerosol mass concentrations were similar to 15%, 25% and 24%, respectively. The magnitude of weekend reduction of black carbon is as much as similar to 1 mu g m(-3). The similarity in the weekly cycle between the column and surface measurements suggests that the aerosol column loading at this location is governed by local anthropogenic emissions. The strongest weekly cycle in composite aerosol mass concentration was observed in the super micron mass range (>1 mu m). The weekly cycle of composite aerosol mass in the sub micron mass range (<1 mu m) was weak in comparison to the super micron aerosol mass. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This paper addresses the behaviour of compacted expansive soils under swell-shrink cycles. Laboratory cyclic swell-shrink tests were conducted on compacted specimens of two expansive soils at surcharge pressures of 6.25, 50.00, and 100.00 kPa. The void ratio and water content of the specimens at several intermediate stages during swelling until the end of swelling and during shrinkage until the end of shrinkage were determined to trace the water content versus void ratio paths with an increasing number of swell-shrink cycles. The test results showed that the swell-shrink path was reversible once the soil reached an equilibrium stage where the vertical deformations during swelling and shrinkage were the same. This usually occurred after about four swell-shrink cycles. The swelling and shrinkage path of each specimen subjected to full swelling - full shrinkage cycles showed an S-shaped curve (two curvilinear portions and a linear portion). However, the swelling and shrinkage path occurred as a part of the S-shaped curve, when the specimen was subjected to full swelling - partial shrinkage cycles. More than 80% of the total volumetric change and more than 50% of the total vertical deformation occurred in the central linear portion of the S-shaped curve. The volumetric change was essentially parallel to the saturation line within a degree of saturation range of 50-80% for the equilibrium cycle. The primary value of the swell-shrink path is to provide information regarding the void ratio change that would occur for a given change in water content for any possible swell-shrink pattern. It is suggested that these swell-shrink paths can be established with a limited number of tests in the laboratory.
Resumo:
Bangalore is experiencing unprecedented urbanisation and sprawl in recent times due to concentrated developmental activities with impetus on industrialisation for the economic development of the region. This concentrated growth has resulted in the increase in population and consequent pressure on infrastructure, natural resources and ultimately giving rise to a plethora of serious challenges such as climate change, enhanced green-house gases emissions, lack of appropriate infrastructure, traffic congestion, and lack of basic amenities (electricity, water, and sanitation) in many localities, etc. This study shows that there has been a growth of 632% in urban areas of Greater Bangalore across 37 years (1973 to 2009). Urban heat island phenomenon is evident from large number of localities with higher local temperatures. The study unravels the pattern of growth in Greater Bangalore and its implication on local climate (an increase of ~2 to 2.5 ºC during the last decade) and also on the natural resources (76% decline in vegetation cover and 79% decline in water bodies), necessitating appropriate strategies for the sustainable management.
Resumo:
Urbanisation is the increase in the population of cities in proportion to the region's rural population. Urbanisation in India is very rapid with urban population growing at around 2.3 percent per annum. Urban sprawl refers to the dispersed development along highways or surrounding the city and in rural countryside with implications such as loss of agricultural land, open space and ecologically sensitive habitats. Sprawl is thus a pattern and pace of land use in which the rate of land consumed for urban purposes exceeds the rate of population growth resulting in an inefficient and consumptive use of land and its associated resources. This unprecedented urbanisation trend due to burgeoning population has posed serious challenges to the decision makers in the city planning and management process involving plethora of issues like infrastructure development, traffic congestion, and basic amenities (electricity, water, and sanitation), etc. In this context, to aid the decision makers in following the holistic approaches in the city and urban planning, the pattern, analysis, visualization of urban growth and its impact on natural resources has gained importance. This communication, analyses the urbanisation pattern and trends using temporal remote sensing data based on supervised learning using maximum likelihood estimation of multivariate normal density parameters and Bayesian classification approach. The technique is implemented for Greater Bangalore – one of the fastest growing city in the World, with Landsat data of 1973, 1992 and 2000, IRS LISS-3 data of 1999, 2006 and MODIS data of 2002 and 2007. The study shows that there has been a growth of 466% in urban areas of Greater Bangalore across 35 years (1973 to 2007). The study unravels the pattern of growth in Greater Bangalore and its implication on local climate and also on the natural resources, necessitating appropriate strategies for the sustainable management.
Resumo:
Urban population is growing at around 2.3 percent per annum in India. This is leading to urbanisation and often fuelling the dispersed development in the outskirts of urban and village centres with impacts such as loss of agricultural land, open space, and ecologically sensitive habitats. This type of upsurge is very much prevalent and persistent in most places, often inferred as sprawl. The direct implication of such urban sprawl is the change in land use and land cover of the region and lack of basic amenities, since planners are unable to visualise this type of growth patterns. This growth is normally left out in all government surveys (even in national population census), as this cannot be grouped under either urban or rural centre. The investigation of patterns of growth is very crucial from regional planning point of view to provide basic amenities in the region. The growth patterns of urban sprawl can be analysed and understood with the availability of temporal multi-sensor, multi-resolution spatial data. In order to optimise these spectral and spatial resolutions, image fusion techniques are required. This aids in integrating a lower spatial resolution multispectral (MSS) image (for example, IKONOS MSS bands of 4m spatial resolution) with a higher spatial resolution panchromatic (PAN) image (IKONOS PAN band of 1m spatial resolution) based on a simple spectral preservation fusion technique - the Smoothing Filter-based Intensity Modulation (SFIM). Spatial details are modulated to a co-registered lower resolution MSS image without altering its spectral properties and contrast by using a ratio between a higher resolution image and its low pass filtered (smoothing filter) image. The visual evaluation and statistical analysis confirms that SFIM is a superior fusion technique for improving spatial detail of MSS images with the preservation of spectral properties.
Resumo:
This paper deals with reducing the waiting times of vehicles at the traffic junctions by synchronizing the traffic signals. Strategies are suggested for betterment of the situation at different time intervals of the day, thus ensuring smooth flow of traffic. The concept of single way systems are also analyzed. The situation is simulated in Witness 2003 Simulation package using various conventions. The average waiting times are reduced by providing an optimal combination for the traffic signal timer. Different signal times are provided for different times of the day, thereby further reducing the average waiting times at specific junctions/roads according to the experienced demands.
Resumo:
C:N ratio of lake sediments provide valuable information about the source and proportions of terrestrial, phytogenic and phycogenic carbon and nitrogen. This study has been carried out in Varthur lake which is receiving sewage since many decades apart from large scale land cover changes. C:N profile of the surficial sediment layer collected in the rainy and the dry seasons revealed higher C:N values[43] due to the accumulation of autochthonous organic material mostly at the deeper portions of the lake. This also highlights N limitation in the sludge either due to uptake by micro and macro-biota or rapid volatilization, denitrification and possible leaching in water. Organic Carbon was lower towards the inlets and higher near the deeper zones. This pattern of Organic C deposition was aided by gusty winds and high flow conditions together with impacts by the land use land cover changes in the watershed. Spatial variability of C:N in surficial sediments is significant compared to its seasonal variability. This communication provides an insight to the pattern in which nutrients are distributed in the sludge/sediment and its variation across seasons and space impacted by the biotic process accompanied by the hydrodynamic changes in the lake.
Resumo:
Bangalore is one of the fastest growing cities in India and is branded as ‘Silicon Valley of India’ for heralding and spearheading the growth of Information Technology (IT) based industries in the country. With the advent and growth of IT industry, as well as numerous industries in other sectors and the onset of economic liberalisation since the early 1990s, Bangalore has taken lead in service-based industries fuelling substantial growth of the city both economically and spatially. Bangalore has become a cosmopolitan city attracting people and business alike, within and across nations. This profile notes the urban setting and provides an overview of the urban fabric, while discussing various prospects related to infrastructure and governance (Sudhira, et al. 2007).