18 resultados para Update
Resumo:
The benefits that accrue from the use of design database include (i) reduced costs of preparing data for application programs and of producing the final specification, and (ii) possibility of later usage of data stored in the database for other applications related to Computer Aided Engineering (CAE). An INTEractive Relational GRAphics Database (INTERGRAD) based on relational models has been developed to create, store, retrieve and update the data related to two dimensional drawings. INTERGRAD provides two languages, Picture Definition Language (PDL) and Picture Manipulation Language (PML). The software package has been implemented on a PDP 11/35 system under the RSX-11M version 3.1 operating system and uses the graphics facility consisting of a VT-11 graphics terminal, the DECgraphic 11 software and an input device, a lightpen.
Resumo:
The stimulation technique has gained much importance in the performance studies of Concurrency Control (CC) algorithms for distributed database systems. However, details regarding the simulation methodology and implementation are seldom mentioned in the literature. One objective of this paper is to elaborate the simulation methodology using SIMULA. Detailed studies have been carried out on a centralised CC algorithm and its modified version. The results compare well with a previously reported study on these algorithms. Here, additional results concerning the update intensiveness of transactions and the degree of conflict are obtained. The degree of conflict is quantitatively measured and it is seen to be a useful performance index. Regression analysis has been carried out on the results, and an optimisation study using the regression model has been performed to minimise the response time. Such a study may prove useful for the design of distributed database systems.
Resumo:
Multiaction learning automata which update their action probabilities on the basis of the responses they get from an environment are considered in this paper. The automata update the probabilities according to whether the environment responds with a reward or a penalty. Learning automata are said to possess ergodicity of the mean if the mean action probability is the state probability (or unconditional probability) of an ergodic Markov chain. In an earlier paper [11] we considered the problem of a two-action learning automaton being ergodic in the mean (EM). The family of such automata was characterized completely by proving the necessary and sufficient conditions for automata to be EM. In this paper, we generalize the results of [11] and obtain necessary and sufficient conditions for the multiaction learning automaton to be EM. These conditions involve two families of probability updating functions. It is shown that for the automaton to be EM the two families must be linearly dependent. The vector defining the linear dependence is the only vector parameter which controls the rate of convergence of the automaton. Further, the technique for reducing the variance of the limiting distribution is discussed. Just as in the two-action case, it is shown that the set of absolutely expedient schemes and the set of schemes which possess ergodicity of the mean are mutually disjoint.