30 resultados para Uncertain paternity
Resumo:
The effect of uncertainties on performance predictions of a helicopter is studied in this article. The aeroelastic parameters such as the air density, blade profile drag coefficient, main rotor angular velocity, main rotor radius, and blade chord are considered as uncertain variables. The propagation of these uncertainties in the performance parameters such as thrust coefficient, figure of merit, induced velocity, and power required are studied using Monte Carlo simulation and the first-order reliability method. The Rankine-Froude momentum theory is used for performance prediction in hover, axial climb, and forward flight. The propagation of uncertainty causes large deviations from the baseline deterministic predictions, which undoubtedly affect both the achievable performance and the safety of the helicopter. The numerical results in this article provide useful bounds on helicopter power requirements.
Resumo:
Payment systems all over the world have grown into a complicated web of solutions. This is more challenging in the case of mobile based payment systems. Mobile based payment systems are many and consist of different technologies providing different services. The diffusion of these various technologies in a market is uncertain. Diffusion theorists, for example Rogers, and Davis suggest how innovation is accepted in markets. In the case of electronic payment systems, the tale of Mondex vs Octopus throws interesting insights on diffusion. Our paper attempts to understand the success potential of various mobile payment technologies. We illustrate what we describe as technology breadth in mobile payment systems using data from payment systems all over the world (n=62). Our data shows an unexpected superiority of SMS technology, over other technologies like NFC, WAP and others. We also used a Delphi based survey (n=5) with experts to address the possibility that SMS will gain superiority in market diffusion. The economic conditions of a country, particularly in developing countries, the services availed and characteristics of the user (for example number of un-banked users in large populated countries) may put SMS in the forefront. This may be true more for micro payments using the mobile.
Resumo:
The effect of uncertainty in composite material properties on the aeroelastic response, vibratory loads, and stability of a hingeless helicopter rotor is investigated. The uncertainty impact on rotating natural frequencies of the blade is studied with Monte Carlo simulations and first-order reliability methods. The stochastic aeroelastic analyses in hover and forward flight are carried out with Monte Carlo simulations. The flap, lag, and torsion responses show considerable scatter from their baseline values, and the uncertainty impact varies with the azimuth angle. Furthermore, the blade response shows finite probability of resonance-type conditions caused by modal frequencies approaching multiples of the rotor speed. The 4/rev vibratory forces show large deviations from their baseline values. The lag mode damping shows considerable scatter due to uncertain material properties with an almost 40% probability of instability in hover.
Resumo:
In each stage of product development, we need to take decisions, by evaluating multiple product alternatives based on multiple criteria. Classical evaluation methods like weighted objectives method assumes certainty about information available during product development. However, designers often must evaluate under uncertainty. Often the likely performance, cost or environmental impacts of a product proposal could be estimated only with certain confidence, which may vary from one proposal to another. In such situations, the classical approaches to evaluation can give misleading results. There is a need for a method that can aid in decision making by supporting quantitative comparison of alternatives to identify the most promising alternative, under uncertain information about the alternatives. A method called confidence weighted objectives method is developed to compare the whole life cycle of product proposals using multiple evaluation criteria under various levels of uncertainty with non crisp values. It estimates the overall worth of proposal and confidence on the estimate, enabling deferment of decision making when decisions cannot be made using current information available.
Resumo:
Several studies on molecular profiling of oligodendrogliomas (OGs) in adults have shown a distinctive genetic pattern characterized by combined deletions of chromosome arms 1 p and 19q, O6-methylguanine-methyltransferase (MGMT) methylation, and isocitrate dehydrogenase 1 (IDH1) mutation, which have potential diagnostic, prognostic, and even therapeutic relevance. OGs in pediatric and young adult patients are rare and have been poorly characterized on a molecular and biological basis, and it remains uncertain whether markers with prognostic significance in adults also have predictive value in these patients. Fourteen cases of OGs in young patients (age, <= 25 years) who received a diagnosis over 7 years were selected (7 pediatric patients age <= 18 years and 7 young adults aged 19-25 years). The cases were evaluated for 1p/19q status, MGMT promoter methylation, p53 mutation, and IDH1 mutation. None of the pediatric cases showed 1p/19q deletion. In young adults, combined 1p/19q loss was observed in 57% and isolated 1p loss in 14% of cases. The majority of cases in both subgroups (71% in each) harbored MGMT gene promoter methylation. TP53 and IDH1 mutations were not seen in any of the cases in both the groups. To our knowledge, this is the first study to show that molecular profile of OGs in pediatric and young adult patients is distinct. Further large-scale studies are required to identify additional clinically relevant genetic alterations in this group of patients.
Resumo:
The effect of structural and aerodynamic uncertainties on the performance predictions of a helicopter is investigated. An aerodynamic model based on blade element and momentum theory is used to predict the helicopter performance. The aeroelastic parameters, such as blade chord, rotor radius, two-dimensional lift-curve slope, blade profile drag coefficient, rotor angular velocity, blade pitch angle, and blade twist rate per radius of the rotor, are considered as random variables. The propagation of these uncertainties to the performance parameters, such as thrust coefficient and power coefficient, are studied using Monte Carlo Simulations. The simulations are performed with 100,000 samples of structural and aerodynamic uncertain variables with a coefficient of variation ranging from 1 to 5%. The scatter in power predictions in hover, axial climb, and forward flight for the untwisted and linearly twisted blades is studied. It is found that about 20-25% excess power can be required by the helicopter relative to the determination predictions due to uncertainties.
Resumo:
Many knowledge based systems (KBS) transform a situation information into an appropriate decision using an in built knowledge base. As the knowledge in real world situation is often uncertain, the degree of truth of a proposition provides a measure of uncertainty in the underlying knowledge. This uncertainty can be evaluated by collecting `evidence' about the truth or falsehood of the proposition from multiple sources. In this paper we propose a simple framework for representing uncertainty in using the notion of an evidence space.
Resumo:
Background: India has the third largest HIV-1 epidemic with 2.4 million infected individuals. Molecular epidemiological analysis has identified the predominance of HIV-1 subtype C (HIV-1C). However, the previous reports have been limited by sample size, and uneven geographical distribution. The introduction of HIV-1C in India remains uncertain due to this lack of structured studies. To fill the gap, we characterised the distribution pattern of HIV-1 subtypes in India based on data collection from nationwide clinical cohorts between 2007 and 2011. We also reconstructed the time to the most recent common ancestor (tMRCA) of the predominant HIV-1C strains. Methodology/Principal Findings: Blood samples were collected from 168 HIV-1 seropositive subjects from 7 different states. HIV-1 subtypes were determined using two or three genes, gag, pol, and env using several methods. Bayesian coalescent-based approach was used to reconstruct the time of introduction and population growth patterns of the Indian HIV-1C. For the first time, a high prevalence (10%) of unique recombinant forms (BC and A1C) was observed when two or three genes were used instead of one gene (p<0.01; p = 0.02, respectively). The tMRCA of Indian HIV-1C was estimated using the three viral genes, ranged from 1967 (gag) to 1974 (env). Pol-gene analysis was considered to provide the most reliable estimate 1971, (95% CI: 1965-1976)]. The population growth pattern revealed an initial slow growth phase in the mid-1970s, an exponential phase through the 1980s, and a stationary phase since the early 1990s. Conclusions/Significance: The Indian HIV-1C epidemic originated around 40 years ago from a single or few genetically related African lineages, and since then largely evolved independently. The effective population size in the country has been broadly stable since the 1990s. The evolving viral epidemic, as indicated by the increase of recombinant strains, warrants a need for continued molecular surveillance to guide efficient disease intervention strategies.
Resumo:
In this paper we study the problem of designing SVM classifiers when the kernel matrix, K, is affected by uncertainty. Specifically K is modeled as a positive affine combination of given positive semi definite kernels, with the coefficients ranging in a norm-bounded uncertainty set. We treat the problem using the Robust Optimization methodology. This reduces the uncertain SVM problem into a deterministic conic quadratic problem which can be solved in principle by a polynomial time Interior Point (IP) algorithm. However, for large-scale classification problems, IP methods become intractable and one has to resort to first-order gradient type methods. The strategy we use here is to reformulate the robust counterpart of the uncertain SVM problem as a saddle point problem and employ a special gradient scheme which works directly on the convex-concave saddle function. The algorithm is a simplified version of a general scheme due to Juditski and Nemirovski (2011). It achieves an O(1/T-2) reduction of the initial error after T iterations. A comprehensive empirical study on both synthetic data and real-world protein structure data sets show that the proposed formulations achieve the desired robustness, and the saddle point based algorithm outperforms the IP method significantly.
Resumo:
Our work is motivated by geographical forwarding of sporadic alarm packets to a base station in a wireless sensor network (WSN), where the nodes are sleep-wake cycling periodically and asynchronously. We seek to develop local forwarding algorithms that can be tuned so as to tradeoff the end-to-end delay against a total cost, such as the hop count or total energy. Our approach is to solve, at each forwarding node enroute to the sink, the local forwarding problem of minimizing one-hop waiting delay subject to a lower bound constraint on a suitable reward offered by the next-hop relay; the constraint serves to tune the tradeoff. The reward metric used for the local problem is based on the end-to-end total cost objective (for instance, when the total cost is hop count, we choose to use the progress toward sink made by a relay as the reward). The forwarding node, to begin with, is uncertain about the number of relays, their wake-up times, and the reward values, but knows the probability distributions of these quantities. At each relay wake-up instant, when a relay reveals its reward value, the forwarding node's problem is to forward the packet or to wait for further relays to wake-up. In terms of the operations research literature, our work can be considered as a variant of the asset selling problem. We formulate our local forwarding problem as a partially observable Markov decision process (POMDP) and obtain inner and outer bounds for the optimal policy. Motivated by the computational complexity involved in the policies derived out of these bounds, we formulate an alternate simplified model, the optimal policy for which is a simple threshold rule. We provide simulation results to compare the performance of the inner and outer bound policies against the simple policy, and also against the optimal policy when the source knows the exact number of relays. Observing the good performance and the ease of implementation of the simple policy, we apply it to our motivating problem, i.e., local geographical routing of sporadic alarm packets in a large WSN. We compare the end-to-end performance (i.e., average total delay and average total cost) obtained by the simple policy, when used for local geographical forwarding, against that obtained by the globally optimal forwarding algorithm proposed by Kim et al. 1].
Resumo:
Even though satellite observations are the most effective means to gather global information in a short span of time, the challenges in this field still remain over continental landmass, despite most of the aerosol sources being land-based. This is a hurdle in global and regional aerosol climate forcing assessment. Retrieval of aerosol properties over land is complicated due to irregular terrain characteristics and the high and largely uncertain surface reflection which acts as `noise' to the much smaller amount of radiation scattered by aerosols, which is the `signal'. In this paper, we describe a satellite sensor the - `Aerosol Satellite (AEROSAT)', which is capable of retrieving aerosols over land with much more accuracy and reduced dependence on models. The sensor, utilizing a set of multi-spectral and multi-angle measurements of polarized components of radiation reflected from the Earth's surface, along with measurements of thermal infrared broadband radiance, results in a large reduction of the `noise' component (compared to the `signal). A conceptual engineering model of AEROSAT has been designed, developed and used to measure the land-surface features in the visible spectral band. Analysing the received signals using a polarization radiative transfer approach, we demonstrate the superiority of this method. It is expected that satellites carrying sensors following the AEROSAT concept would be `self-sufficient', to obtain all the relevant information required for aerosol retrieval from its own measurements.
Resumo:
General circulation models (GCMs) are routinely used to simulate future climatic conditions. However, rainfall outputs from GCMs are highly uncertain in preserving temporal correlations, frequencies, and intensity distributions, which limits their direct application for downscaling and hydrological modeling studies. To address these limitations, raw outputs of GCMs or regional climate models are often bias corrected using past observations. In this paper, a methodology is presented for using a nested bias-correction approach to predict the frequencies and occurrences of severe droughts and wet conditions across India for a 48-year period (2050-2099) centered at 2075. Specifically, monthly time series of rainfall from 17 GCMs are used to draw conclusions for extreme events. An increasing trend in the frequencies of droughts and wet events is observed. The northern part of India and coastal regions show maximum increase in the frequency of wet events. Drought events are expected to increase in the west central, peninsular, and central northeast regions of India. (C) 2013 American Society of Civil Engineers.
Resumo:
We propose a simulation-based algorithm for computing the optimal pricing policy for a product under uncertain demand dynamics. We consider a parameterized stochastic differential equation (SDE) model for the uncertain demand dynamics of the product over the planning horizon. In particular, we consider a dynamic model that is an extension of the Bass model. The performance of our algorithm is compared to that of a myopic pricing policy and is shown to give better results. Two significant advantages with our algorithm are as follows: (a) it does not require information on the system model parameters if the SDE system state is known via either a simulation device or real data, and (b) as it works efficiently even for high-dimensional parameters, it uses the efficient smoothed functional gradient estimator.
Resumo:
To evaluate the interlaboratory mass bias for high-precision stable Mg isotopic analysis of natural materials, a suite of silicate standards ranging in composition from felsic to ultramafic were analyzed in five laboratories by using three types of multicollector inductively coupled plasma mass spectrometer (MC-ICPMS). Magnesium isotopic compositions from all labs are in agreement for most rocks within quoted uncertainties but are significantly (up to 0.3 parts per thousand in Mg-26/Mg-24, > 4 times of uncertainties) different for some mafic samples. The interlaboratory mass bias does not correlate with matrix element/Mg ratios, and the mechanism for producing it is uncertain but very likely arises from column chemistry. Our results suggest that standards with different matrices are needed to calibrate the efficiency of column chemistry and caution should be taken when dealing with samples with complicated matrices. Well-calibrated standards with matrix elements matching samples should be used to reduce the interlaboratory mass bias.
Resumo:
Micro Small and Medium Enterprises (MSMEs) is an integral part of the Indian industrial sector. The distinctive features of MSMEs are less capital investment and high labour absorption which has created unprecedented importance to this sector. As per the Development Commissioner of MSME, the sector has the credit of being the second highest in employment in India, which stands next to agricultural sector. The MSMEs are very much needed in efficiently allocating the enormous labour supply and scarce capital by implementing labour intensive production processes. Associated with this high growth rates, MSMEs are also facing a number of problems like sub-optimal scale of operation, technological obsolescence, supply chain inefficiencies, increasing domestic and global competition, fund shortages, change in manufacturing & marketing strategies, turbulent and uncertain market scenario. To survive with such issues and compete with large and global enterprises, MSMEs need to adopt innovative approaches in their regular business operations. Among the manufacturing sectors, we find that they are unable to focus themselves in the present competition. This paper presents a brief literature of work done in MSMEs, Innovation and Strategic marketing with reference to Indian manufacturing firms.