58 resultados para Two-hybrid


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper an attempt is made to obtain deflections of hybrid, laminated, rectangular and skew composite plates. Analysis is performed by employing the Galerkin technique. Numerical results have been obtained for two types of layups employing Kevlar/epoxy and Boron/epoxy laminae. It is observed that for a given aspect ratio the rigidity of the skew plate increases with an increase in the skew angle. Further, for a specified deflection, the hybrid laminates turn out to be lighter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work deals with the formulation and implementation of finite deformation viscoplasticity within the framework of stress-based hybrid finite element methods. Hybrid elements, which are based on a two-field variational formulation, are much less susceptible to locking than conventional displacement-based elements. The conventional return-mapping scheme cannot be used in the context of hybrid stress methods since the stress is known, and the strain and the internal plastic variables have to be recovered using this known stress field.We discuss the formulation and implementation of the consistent tangent tensor, and the return-mapping algorithm within the context of the hybrid method. We demonstrate the efficacy of the algorithm on a wide range of problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We incorporate various gold nanoparticles (AuNPs) capped with different ligands in two-dimensional films and three-dimensional aggregates derived from N-stearoyl-L-alanine and N-lauroyl-L-alanine, respectively. The assemblies of N-stearoyl-L-alanine afforded stable films at the air-water interface. More compact assemblies were formed upon incorporation of AuNPs in the air-water interface of N-stearoyl-L-alanine. We then examined the effects of incorporation of various AuNPs functionalized with different capping ligands in three-dimensional assemblies of N-lauroyl-L-alanine, a compound that formed a gel in hydrocarbons. The profound influence of nanoparticle incorporation into physical gels was evident from evaluation of various microscopic and bulk properties. The interaction of AuNPs with the gelator assembly was found to depend critically on the capping ligands protecting the Au surface of the gold nanoparticles. Transmission electron microscopy (TEM) showed a long-range directional assembly of certain AuNPs along the gel fibers. Scanning electron microscopy (SEM) images of the freeze-dried gels and nanocomposites indicate that the morphological transformation in the composite microstructures depends significantly on the capping agent of the nanoparticles. Differential scanning calorimetry (DSC) showed that gel formation from sol occurred at a lower temperature upon incorporation of AuNPs having capping ligands that were able to align and noncovalently interact with the gel fibers. Rheological studies indicate that the gel-nanoparticle composites exhibit significantly greater viscoelasticity compared to the native gel alone when the capping ligands are able to interact through interdigitation into the gelator assembly. Thus, it was possible to define a clear relationship between the materials and the molecular-level properties by means of manipulation of the information inscribed on the NP surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid peptide segments containing contiguous alpha and gamma amino acid residues can form C-12 hydrogen bonded turns which may be considered as backbone expanded analogues of C-10 beta-turns) found in alpha alpha segments. Exploration of the regular hydrogen bonded conformations accessible for hybrid alpha gamma sequences is facilitated by the use of a stereochemically constrained gamma amino acid residue gabapentin (1-aminomethylcyclohexaneacetic acid, Gpn), in which the two torsion angles about C-gamma-C-beta (theta(1)) and C-beta-C-alpha (theta(2)) are predominantly restricted to gauche conformations. The crystal structures of the octapeptides Boc-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-OMe (1) and Boc-Leu-Phe-Val-Aib-Gpn-Leu-Phe-Val-OMe (2) reveal two distinct conformations for the Aib-Gpn segment. Peptide 1 forms a continuous helix over the Aib(2)-Aib(6) segment, while the peptide 2 forms beta-hairpin structure stabilized by four cross-strand hydrogen bonds with the Aib-Gpn segment forming a nonhelical C-12 turn. The robustness of the helix in peptide 1 in solution is demonstrated by NMR methods. Peptide 2 is conformationally fragile in solution with evidence of beta-hairpin conformations being obtained in methanol. Theoretical calculations permit delineation of the various C-12 hydrogen bonded structures which are energetically feasible in alpha gamma and gamma alpha sequences.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformation, organization, and phase transitions of alkyl chains in organic-inorganic hybrids based on the double pervoskite-slab lead iodides, (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 (n = 11, 13, 15, 17) have been investigated by X-ray diffraction, calorimetry, and infrared vibrational spectroscopy. In these hybrid solids, double pervoskite (CH3NH3)Pb2I7 slabs are interleaved with alkyl ammonium chains with the anchored alkyl chains arranged as tilted bilayers and adopting a planar all-trans conformation at room temperature. The (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 compounds exhibit a single reversible phase transition above room temperature with the associated enthalpy change varying linearly with alkyl chain length. This transition corresponds to the melting in two-dimensions of the alkyl chains of the anchored bilayer and is characterized by increased conformational disorder of the methylene units of the chain and loss of tilt angle coherence leading to an increase in the interslab spacing. By monitoring features in the infrared spectra that are characteristic of the global conformation of the alkyl chains, a quantitative relation between conformational disorder and melting of the anchored bilayer is established. It is found that, irrespective of the alkyl chain length, melting occurs when at least 60% of the chains in the anchored bilayer of (CH3NH3)(CH3(CH2)(n)NH3)(2)Pb2I7 have one or more gauche defects. This concentration is determined by the underlying lattice to which the alkyl chains are anchored.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In our effort to explore the use of the sulfite ion to design hybrid and open-framework materials, we have been able to prepare, under hydrothermal conditions, zero-dimensional [Zn(C12H8N2)(SO3)]center dot 2H(2)O, I (a = 7.5737(5) angstrom, b = 10.3969(6) angstrom, c = 10.3986(6) angstrom, alpha = 64.172(1)degrees, beta = 69.395(1)degrees, gamma = 79.333(1)degrees, Z = 2, and space group P (1) over bar), one-dimensional [Zn-2(C12H8N2)(SO3)(2)(H2O)], II (a = 8.0247(3) angstrom, b = 9.4962(3) angstrom, c = 10.2740(2) A, alpha = 81.070(1)degrees, beta = 80.438(1)degrees, gamma = 75.66(5)degrees, Z = 2, and space group P (1) over bar), two-dimensional [Zn-2(C10H8N2)(SO3)(2)]center dot H2O, III (a = 16.6062(1) angstrom, b = 4.7935(1) angstrom, c = 19.2721(5) angstrom, beta = 100.674(2)degrees, Z = 4, and space group C2/c), and three-dimensional [Zn-4(C6H12N2)(SO3)(4)(H2O)(4)], IV (a = 11.0793(3) angstrom, c = 8.8246(3) angstrom, Z = 2, and space group P42nm), of which the last three are coordination polymers. A hybrid open-framework sulfite-sulfate of the composition [C2H10N2][Nd(SO3)(SO4)(H2O)](2), V (a = 9.0880(3) angstrom, b = 6.9429(2) angstrom, c = 13.0805(5) A, beta = 91.551(2)degrees, Z = 2, and space group P2(1)/c), with a layered structure containing metal-oxygen-metal bonds has also been described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

he crystal structure of 12 peptides containing the conformationally constrained 1-(aminomethyl)cyclohexaneacetic acid, gabapentin (Gpn), are reported. In all the 39 Gpn residues conformationally characterized so far, the torsion angles about the C-alpha-C-beta and C-beta-C-gamma bonds are restricted to the gauche conformation (+/- 60 degrees). The Gpn residue is constrained to adopt folded conformations resulting in the formation of intramolecularly hydrogen-bonded structures even in short peptides. The peptides Boc-Ac(6)c-Gpn-OMe 1 and Boc-Gpn-Aib-Gpn-Aib-OMe 2 provide examples of C-7 conformation; peptides Boc-Gpn-Aib-OH 3, Boc-Ac(6)c-Gpn-OH 4, Boc-Val-Pro-Gpn-OH 5, Piv-Pro-Gpn-Val-OMe 6, and Boc-Gpn-Gpn-Leu-OMe 7 provide examples of C-9 conformation; peptide Boc-Ala-Aib-Gpn-Aib-Ala-OMe 8 provides an example of C-12 conformation and peptides Boc-beta Leu-Gpn-Val-OMe 9 and Boc-beta Phe-Gpn-Phe-OMe 10 provide examples of C-13 conformation. Gpn peptides provide examples of backbone expanded mimetics for canonical alpha-peptide turns like the gamma (C-7) and the beta (C-10) turns. The hybrid beta gamma sequences provide an example of a mimetic of the C-13 alpha-turn formed by three contiguous alpha-amino acid residues. Two examples of folded tripeptide structures, Boc-Gpn-beta Phe-Leu-OMe 11 and Boc-Aib-Gpn-beta Phg-NHMe 12, lacking internal hydrogen bonds are also presented. An analysis of available Gpn residue conformations provides the basis for future design of folded hybrid peptides.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional achiral coordination polymers of the general formula M2(D, l-NHCH (COO)CH2COO)2·C4H4N2 where M = Ni and Co and pyrazine acts as the linker molecule have been prepared under hydrothermal conditions starting with [M(L-NHCH(COO)CH2COO)·3H2O] possessing a helical chain structure. A three-dimensional hybrid compound of the formula Pb2.5[N{CH(COO) CH2COO}22H2O] has also been prepared hydrothermally starting with aspartic acid and Pb(NO3)2. In this lead compound, where a secondary amine formed by the dimerisation of aspartic acid acts as the ligand, there is two-dimensional inorganic connectivity and one-dimensional organic connectivity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conformational properties of foldamers generated from alpha gamma hybrid peptide sequences have been probed in the model sequence Boc-Aib-Gpn-Aib-Gpn-NHMe. The choice of alpha-aminoisobutyryl (Aib) and gabapentin (Gpn) residues greatly restricts sterically accessible coil formational space. This model sequence was anticipated to be a short segment of the alpha gamma C-12 helix, stabilized by three successive 4 -> 1 hydrogen bonds, corresponding to a backbone-expanded analogue of the alpha polypeptide 3(10)-helix. Unexpectedly, three distinct crystalline polymorphs were characterized in the solid state by X-ray diffraction. In one form, two successive C-12 hydrogen bonds were obtained at the N-terminus, while a novel C-17 hydrogen-bonded gamma alpha gamma turn was observed at the C-terminus. In the other two polymorphs, isolated C-9 and C-7 hydrogen-bonded turns were observed at Gpn (2) and Gpn (4). Isolated C-12 and C-9 turns were also crystallographically established in the peptides Boc-Aib-Gpn-Aib-OMe and Boc-Gpn-Aib-NHMe, respectively. Selective line broadening of NH resonances and the observation of medium range NH(i)<-> NH(i+2) NOEs established the presence of conformational heterogeneity for the tetrapeptide in CDCl3 solution. The NMR results are consistent with the limited population of the continuous C-12 helix conformation. Lengthening of the (alpha gamma)(n) sequences in the nonapeptides Boc-Aib-Gpn-Aib-Gpn-Aib-Gpn-Aib-Gpn-Xxx (Xxx = Aib, Leu) resulted in the observation of all of the sequential NOEs characteristic of an alpha gamma C-12 helix. These results establish that conformational fragility is manifested in short hybrid alpha gamma sequences despite the choice of conformationally constrained residues, while stable helices are formed on chain extension.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A simple and efficient two-step hybrid electrochemical-thermal route was developed for the synthesis of large quantity of ZnO nanoparticles using aqueous sodium bicarbonate electrolyte and sacrificial Zn anode and cathode in an undivided cell under galvanostatic mode at room temperature. The bath concentration and current density were varied from 30 to 120 mmol and 0.05 to 1.5 A/dm(2). The electrochemically generated precursor was calcined for an hour at different range of temperature from 140 to 600 A degrees C. The calcined samples were characterized by XRD, SEM/EDX, TEM, TG-DTA, FT-IR, and UV-Vis spectral methods. Rietveld refinement of X-ray data indicates that the calcined compound exhibits hexagonal (Wurtzite) structure with space group of P63mc (No. 186). The crystallite sizes were in the range of 22-75 nm based on Debye-Scherrer equation. The TEM results reveal that the particle sizes were in the order of 30-40 nm. The blue shift was noticed in UV-Vis absorption spectra, the band gaps were found to be 5.40-5.11 eV. Scanning electron micrographs suggest that all the samples were randomly oriented granular morphology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hybrid elements, which are based on a two-field variational formulation with the displacements and stresses interpolated separately, are known to deliver very high accuracy, and to alleviate to a large extent problems of locking that plague standard displacement-based formulations. The choice of the stress interpolation functions is of course critical in ensuring the high accuracy and robustness of the method. Generally, an attempt is made to keep the stress interpolation to the minimum number of terms that will ensure that the stiffness matrix has no spurious zero-energy modes, since it is known that the stiffness increases with the increase in the number of terms. Although using such a strategy of keeping the number of interpolation terms to a minimum works very well in static problems, it results either in instabilities or fails to converge in transient problems. This is because choosing the stress interpolation functions merely on the basis of removing spurious energy modes can violate some basic principles that interpolation functions should obey. In this work, we address the issue of choosing the interpolation functions based on such basic principles of interpolation theory and mechanics. Although this procedure results in the use of more number of terms than the minimum (and hence in slightly increased stiffness) in many elements, we show that the performance continues to be far superior to displacement-based formulations, and, more importantly, that it also results in considerably increased robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present the results on the evolution of microscopic dynamics of hybrid nanoparticles and their binary mixtures as a function of temperature and wave vector. We find unexpectedly a nonmonotonic dependence of the structural relaxation time of the nanoparticles as a function of the morphology. In binary mixtures of two of the largest nanoparticles studied, we observe re-entrant vitrification as a function of the volume fraction of the smaller nanoparticle, which is unusual for such high diameter ratio. Possible explanation for the observed behavior is provided. (C) 2010 American Institute of Physics. doi:10.1063/1.3495480]