276 resultados para Transmission spectra
Resumo:
From the proton NMR spectra of Nfl-dimethyluracil oriented in two different nematic solvents, the internal rotation of the methyl groups about the N-C bonds is studied. It has been observed that the preferred conformation of the methyl group having one carbonyl in the vicinity is the one where a C-H bond is in the ring plane pointing toward the carbonyl group. The results are not sensitive to the mode of rotation of the other methyl group. These data are interpreted in terms of the bond polarizations.
Resumo:
Infrared spectra of N-acetylthiourea (ATU) and its N,N,N′-trideuterated compound have been examined in the range 4000–50 cm−1. A complete vibrational assignment with a normal coordinate treatment based on a Urey-Bradley type intramolecular potential function supplemented with valence force function for the out of plane and torsional modes is proposed and the feature of the thioureido vibrations explained. A molecular orbital study by the CNDO/2 method of ATU and its oxygen analog is undertaken and the results are analyzed for a comparative study of the molecular electronic structure and conformation.
Resumo:
He II photoelectron spectra of La, Ce and Yb show features which cannot be explained in terms of single electron excitations. It is proposed that these are due to formation of electron-hole paris.
Resumo:
Transmission loss of a rectangular expansion chamber, the inlet and outlet of which are situated at arbitrary locations of the chamber, i.e., the side wall or the face of the chamber, are analyzed here based on the Green's function of a rectangular cavity with homogeneous boundary conditions. The rectangular chamber Green's function is expressed in terms of a finite number of rigid rectangular cavity mode shapes. The inlet and outlet ports are modeled as uniform velocity pistons. If the size of the piston is small compared to wavelength, then the plane wave excitation is a valid assumption. The velocity potential inside the chamber is expressed by superimposing the velocity potentials of two different configurations. The first configuration is a piston source at the inlet port and a rigid termination at the outlet, and the second one is a piston at the outlet with a rigid termination at the inlet. Pressure inside the chamber is derived from velocity potentials using linear momentum equation. The average pressure acting on the pistons at the inlet and outlet locations is estimated by integrating the acoustic pressure over the piston area in the two constituent configurations. The transfer matrix is derived from the average pressure values and thence the transmission loss is calculated. The results are verified against those in the literature where use has been made of modal expansions and also numerical models (FEM fluid). The transfer matrix formulation for yielding wall rectangular chambers has been derived incorporating the structural–acoustic coupling. Parametric studies are conducted for different inlet and outlet configurations, and the various phenomena occurring in the TL curves that cannot be explained by the classical plane wave theory, are discussed.
Resumo:
The three isomeric cresols were subjected to the all-valence-electron CNDO/2 andPPP-CI calculations. Results from this study were used: (i) to compare the electronic structures of these isomers vis-Ã-vis parent compounds-phenol and toluene, (ii) to obtain a quantitative picture of their chemical reactivities and electronic absorption spectra. Using the sgr-core charges derived from CNDO/2 calculations and subsequently revising the valence-state ionisation potential and one-center-two-electron repulsion integrals, thePPP-CI calculations were performed on the title compounds according toNishimoto andForster scheme. In these calculations the pseudo-unsaturated nature of the methyl group has been given due consideration. In spectral assignment, compared to the conventionalPPP approach, the CNDO/2-basedPPP-CI method gave a better agreement with the experimental data.
Resumo:
X-ra!. K-absorption spectra of niobium in niobium dichalcogenides. namely NbS, and NbSe, and their first-row transition-metal intercalates Mi P 3N bSz (M = Cr. Mn. Fe. Co. Ni) and Ml#,NbSe2 (M = Fe. CO). have been measured together with those in niobium metal. The spectra of these materials are \er? similar to one another. They reflect the transitions to the partially filled niobium d band with some p character. A bariety of x-ray absorption nearedge structures (XASES) associated with the K edges of intercalated atoms are also presented and discussed.
Resumo:
Infrared spectra are recorded for S-methyl dithiocarbazate and its N-deuterated compound in two molecular conformations in the solid state and in solution between 4000 and 30 cm−1. The assignments have been supported from a complete normal coordinate analysis; the conformation sensitive bands of the –CSNHNH2 grouping are discussed. The assignments are compared with those of related molecules to check the internal consistency and to obtain the pattern of the characteristic bands of thiocarbazoyl (–CSNHNH2) group. The magnitudes of the C–N and S–CH3 torsional barriers are estimated from the force constants.
Resumo:
The paper presents a method for transmission loss charge allocation in deregulated power systems based on Relative Electrical Distance (RED) concept. Based on RED between the generator and load nodes and the predefined bilateral power contracts, charge evaluation is carried out. Generally through some power exchange mechanism a set of bilateral contracts are determined that facilitate bilateral agreements between the generation and distribution entities. In this paper the possible charges incurred in meeting loads like generation charge, transmission charge and charge due to losses are evaluated. Case studies have been carried out on a few practical equivalent systems. Due to space limitation results for a sample 5 bus system are presented considering ideal load/generation power contracts and deviated load/generation power contracts. Extensive numerical testing indicates that the proposed allocation scheme produces loss allocations that are appropriate and that behave in a physically reasonable manner.
Resumo:
Artifacts in the form of cross peaks have been observed along two- and three-quantum diagonals in single-quantum two-dimensional correlated (COSY) spectra of several peptides and oligonucleotides. These have been identified as due to the presence of a non-equilibrium state of kind I (a state describable by populations which differ from equilibrium) of strongly coupled spins carried over from one experiment to the next in the COSY algorithm.
Resumo:
Length scale-down (LS) model tests have been traditionally employed for laboratory studies on aeolian vibration of transmission line conductors. The span adopted is normally 30 m and is recommended by the relevant Indian, as well as other, standards. The traditionally adopted length of the LS model is reexamined herein to establish the rationale behind the choice. Based on the theoretical studies discussed, certain guidelines for the choice of model span of conductor are emphasized. In addition, the adequacy of the LS span as a tool for predicting the performance of the full span is reestablished.
Resumo:
An attempt has been made at synthesis and in resolving some of the uncertainties related to the assignments of charge-transfer satellites in the X-ray photoelectron spectra of transition-metal and rare-earth compounds. New satellites are reported in the ligand core-hole spectra as well as in the metal core-level spectra of oxides of second- and third-row transition metals including rare earths. Satellites in the ligand levels and the metal levels tend to be mutually exclusive, a behaviour that can be understood on the basis of metal-ligand overlap. Systematics in the intensities and energy separations of satellites in the first-row transition-metal compounds have been examined in order to gain an insight into the nature of these satellites. A simple model involving the sudden approximation has been employed to explain the observed systematics in intensities of satellites appearing next to metal and ligand core levels on the basis of metal-ligand overlap.
Resumo:
The Raman spectra of NaLa(MoO4)2 single crystal have been recorded and interpreted on the basis of C4h symmetry. The observed fundamentals (internal and external) have been assigned unambiguously with the help of polarization data. All the group theoretically predicted Raman active fundamentals have been observed.
Resumo:
Raman and infrared spectra of imidazoline-2-thione (IMZT) and imidazoline-2-one (IMZO) have been recorded. Normal coordinate analyses have been performed for all the fundamental vibrations of IMZT, IMZT-d2 and IMZO employing a Urey—Bradley potential function supplemented with valence type force constants for the out of plane modes. The results of the vibrational analyses are discussed in relation to the assignments in related molecules. The vibrational assignments for IMZT and IMZO have been compared with those in structurally similar molecules and the need to obtain more reliable band assignments for some of the molecules considered is emphasised.
Resumo:
The Raman and infrared spectra of N-(2-pyridyl) thioformamide and N-(2-pyridyl)-thioacetamide have been measured. The assignment of the bands is aided by the complete normal coordinate treatment for all the vibrations of N-(2-pyridyl)thioformamide and its N-deuterated molecule using a Urey—Bradley force function for the in-plane vibrations and a valence force function for the out of plane vibrations. Variable temperature 1H NMR study of the two pyridylthionamides has also been performed. It is inferred that while N-(2-pyridyl)thioformamide favours a cis —CSNH— group, the other compound favours a trans —CSNH— grouping at ambient temperature.