29 resultados para Training manuals.
Resumo:
This article explores issues and challenges in the field of education in nanoscience and technology with special emphasis with respect to India, where an expanding programme of research in nano science and technology is in place. The article does not concentrate on actual curricula that are needed in nano science and technology education course. Rather it focuses on the desirability of nanoscience and technology education at different levels of education and future prospect of students venturing into this within the economic and cultural milieu of India. We argue that care is needed in developing the education programme in India. However, the risk is worth taking as the education on nanoscience and technology can bridge the man power gap not only in this area of technology but also related technologies of hardware and micro electronics for which the country is a promising destination at global level. This will also unlock the demographical advantage that India will enjoy in the next five decades.
Resumo:
While wireless LAN (WLAN) is very popular now a days, its performance deteriorates in the presence of other signals like Bluetooth (BT) signal that operate in the same band as WLAN. Present interference mitigation techniques in WLAN due to BT cancel interference in WLAN sub carrier where BT has hopped but do not cancel interference in the adjacent sub carriers. In this paper BT interference signal in all the OFDM sub carriers is estimated. That is, leakage of BT in other sub carriers including the sub carriers in which it has hopped is also measured. BT signals are estimated using the training signals of OFDM system. Simulation results in AWGN noise show that proposed algorithm agrees closely with theoretical results.
Resumo:
Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.
Resumo:
Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.
Resumo:
This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS
Resumo:
We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]
Resumo:
In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.
Resumo:
Training for receive antenna selection (AS) differs from that for conventional multiple antenna systems because of the limited hardware usage inherent in AS. We analyze and optimize the performance of a novel energy-efficient training method tailored for receive AS. In it, the transmitter sends not only pilots that enable the selection process, but also an extra pilot that leads to accurate channel estimates for the selected antenna that actually receives data. For time-varying channels, we propose a novel antenna selection rule and prove that it minimizes the symbol error probability (SEP). We also derive closed-form expressions for the SEP of MPSK, and show that the considered training method is significantly more energy-efficient than the conventional AS training method.
Resumo:
Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes.
Resumo:
Single receive antenna selection (AS) is a popular method for obtaining diversity benefits without the additional costs of multiple radio receiver chains. Since only one antenna receives at any time, the transmitter sends a pilot multiple times to enable the receiver to estimate the channel gains of its N antennas to the transmitter and select an antenna. In time-varying channels, the channel estimates of different antennas are outdated to different extents. We analyze the symbol error probability (SEP) in time-varying channels of the N-pilot and (N+1)-pilot AS training schemes. In the former, the transmitter sends one pilot for each receive antenna. In the latter, the transmitter sends one additional pilot that helps sample the channel fading process of the selected antenna twice. We present several new results about the SEP, optimal energy allocation across pilots and data, and optimal selection rule in time-varying channels for the two schemes. We show that due to the unique nature of AS, the (N+1)-pilot scheme, despite its longer training duration, is much more energy-efficient than the conventional N-pilot scheme. An extension to a practical scenario where all data symbols of a packet are received by the same antenna is also investigated.
Resumo:
Transmit antenna selection (AS) has been adopted in contemporary wideband wireless standards such as Long Term Evolution (LTE). We analyze a comprehensive new model for AS that captures several key features about its operation in wideband orthogonal frequency division multiple access (OFDMA) systems. These include the use of channel-aware frequency-domain scheduling (FDS) in conjunction with AS, the hardware constraint that a user must transmit using the same antenna over all its assigned subcarriers, and the scheduling constraint that the subcarriers assigned to a user must be contiguous. The model also captures the novel dual pilot training scheme that is used in LTE, in which a coarse system bandwidth-wide sounding reference signal is used to acquire relatively noisy channel state information (CSI) for AS and FDS, and a dense narrow-band demodulation reference signal is used to acquire accurate CSI for data demodulation. We analyze the symbol error probability when AS is done in conjunction with the channel-unaware, but fair, round-robin scheduling and with channel-aware greedy FDS. Our results quantify how effective joint AS-FDS is in dispersive environments, the interactions between the above features, and the ability of the user to lower SRS power with minimal performance degradation.
Resumo:
This paper considers the design of a power-controlled reverse channel training (RCT) scheme for spatial multiplexing (SM)-based data transmission along the dominant modes of the channel in a time-division duplex (TDD) multiple-input and multiple-output (MIMO) system, when channel knowledge is available at the receiver. A channel-dependent power-controlled RCT scheme is proposed, using which the transmitter estimates the beamforming (BF) vectors required for the forward-link SM data transmission. Tight approximate expressions for 1) the mean square error (MSE) in the estimate of the BF vectors, and 2) a capacity lower bound (CLB) for an SM system, are derived and used to optimize the parameters of the training sequence. Moreover, an extension of the channel-dependent training scheme and the data rate analysis to a multiuser scenario with M user terminals is presented. For the single-mode BF system, a closed-form expression for an upper bound on the average sum data rate is derived, which is shown to scale as ((L-c - L-B,L- tau)/L-c) log logM asymptotically in M, where L-c and L-B,L- tau are the channel coherence time and training duration, respectively. The significant performance gain offered by the proposed training sequence over the conventional constant-power orthogonal RCT sequence is demonstrated using Monte Carlo simulations.
Resumo:
This paper considers the problem of receive antenna selection (AS) in a multiple-antenna communication system having a single radio-frequency (RF) chain. The AS decisions are based on noisy channel estimates obtained using known pilot symbols embedded in the data packets. The goal here is to minimize the average packet error rate (PER) by exploiting the known temporal correlation of the channel. As the underlying channels are only partially observed using the pilot symbols, the problem of AS for PER minimization is cast into a partially observable Markov decision process (POMDP) framework. Under mild assumptions, the optimality of a myopic policy is established for the two-state channel case. Moreover, two heuristic AS schemes are proposed based on a weighted combination of the estimated channel states on the different antennas. These schemes utilize the continuous valued received pilot symbols to make the AS decisions, and are shown to offer performance comparable to the POMDP approach, which requires one to quantize the channel and observations to a finite set of states. The performance improvement offered by the POMDP solution and the proposed heuristic solutions relative to existing AS training-based approaches is illustrated using Monte Carlo simulations.