90 resultados para Topology Optimization Method


Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present a generic method/model for multi-objective design optimization of laminated composite components, based on vector evaluated particle swarm optimization (VEPSO) algorithm. VEPSO is a novel, co-evolutionary multi-objective variant of the popular particle swarm optimization algorithm (PSO). In the current work a modified version of VEPSO algorithm for discrete variables has been developed and implemented successfully for the, multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are - the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria; failure mechanism based failure criteria, Maximum stress failure criteria and the Tsai-Wu failure criteria. The optimization method is validated for a number of different loading configurations - uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conventional three-dimensional isoparametric elements are susceptible to problems of locking when used to model plate/shell geometries or when the meshes are distorted etc. Hybrid elements that are based on a two-field variational formulation are immune to most of these problems, and hence can be used to efficiently model both "chunky" three-dimensional and plate/shell type structures. Thus, only one type of element can be used to model "all" types of structures, and also allows us to use a standard dual algorithm for carrying out the topology optimization of the structure. We also address the issue of manufacturability of the designs.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, we present a generic method/model for multi-objective design optimization of laminated composite components, based on Vector Evaluated Artificial Bee Colony (VEABC) algorithm. VEABC is a parallel vector evaluated type, swarm intelligence multi-objective variant of the Artificial Bee Colony algorithm (ABC). In the current work a modified version of VEABC algorithm for discrete variables has been developed and implemented successfully for the multi-objective design optimization of composites. The problem is formulated with multiple objectives of minimizing weight and the total cost of the composite component to achieve a specified strength. The primary optimization variables are the number of layers, its stacking sequence (the orientation of the layers) and thickness of each layer. The classical lamination theory is utilized to determine the stresses in the component and the design is evaluated based on three failure criteria: failure mechanism based failure criteria, maximum stress failure criteria and the tsai-wu failure criteria. The optimization method is validated for a number of different loading configurations-uniaxial, biaxial and bending loads. The design optimization has been carried for both variable stacking sequences, as well fixed standard stacking schemes and a comparative study of the different design configurations evolved has been presented. Finally the performance is evaluated in comparison with other nature inspired techniques which includes Particle Swarm Optimization (PSO), Artificial Immune System (AIS) and Genetic Algorithm (GA). The performance of ABC is at par with that of PSO, AIS and GA for all the loading configurations. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is concerned with grasping biological cells in aqueous medium with miniature grippers that can also help estimate forces using vision-based displacement measurement and computation. We present the design, fabrication, and testing of three single-piece, compliant miniature grippers with parallel and angular jaw motions. Two grippers were designed using experience and intuition, while the third one was designed using topology optimization with implicit manufacturing constraints. These grippers were fabricated using different manufacturing techniques using spring steel and polydimethylsiloxane ( PDMS). The grippers also serve the purpose of a force sensor. Toward this, we present a vision-based force-sensing technique by solving Cauchy's problem in elasticity using an improved algorithm. We validated this technique at the macroscale, where there was an independent method to estimate the force. In this study, the gripper was used to hold a yeast ball and a zebrafish egg cell of less than 1 mm in diameter. The forces involved were estimated to be about 30 and 10 mN for the yeast ball and the zebrafish egg cell, respectively.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present the concept, prototypes, and an optimal design method for a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. It enables users, using their creativity and mechanics intuition, to quickly realize a compliant mechanism. The mechanisms assembled in this manner accurately capture the essential behavior of the topology, shape, size and material aspects and thereby can lead the way for a real compliant mechanism for practical use. Also described in this paper are the design of the connector to which flexible beams can be added in eight different directions; and prototyping of the spring steel connectors as well as beams using wire-cut electro discharge machining. It is noted in this paper that the concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joining at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and pragmatic toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it is useful even for a novice to design compliant mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With the availability of a huge amount of video data on various sources, efficient video retrieval tools are increasingly in demand. Video being a multi-modal data, the perceptions of ``relevance'' between the user provided query video (in case of Query-By-Example type of video search) and retrieved video clips are subjective in nature. We present an efficient video retrieval method that takes user's feedback on the relevance of retrieved videos and iteratively reformulates the input query feature vectors (QFV) for improved video retrieval. The QFV reformulation is done by a simple, but powerful feature weight optimization method based on Simultaneous Perturbation Stochastic Approximation (SPSA) technique. A video retrieval system with video indexing, searching and relevance feedback (RF) phases is built for demonstrating the performance of the proposed method. The query and database videos are indexed using the conventional video features like color, texture, etc. However, we use the comprehensive and novel methods of feature representations, and a spatio-temporal distance measure to retrieve the top M videos that are similar to the query. In feedback phase, the user activated iterative on the previously retrieved videos is used to reformulate the QFV weights (measure of importance) that reflect the user's preference, automatically. It is our observation that a few iterations of such feedback are generally sufficient for retrieving the desired video clips. The novel application of SPSA based RF for user-oriented feature weights optimization makes the proposed method to be distinct from the existing ones. The experimental results show that the proposed RF based video retrieval exhibit good performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The problem of assigning customers to satellite channels is considered. Finding an optimal allocation of customers to satellite channels is a difficult combinatorial optimization problem and is shown to be NP-complete in an earlier study. We propose a genetic algorithm (GA) approach to search for the best/optimal assignment of customers to satellite channels. Various issues related to genetic algorithms such as solution representation, selection methods, genetic operators and repair of invalid solutions are presented. A comparison of this approach with the standard optimization method is presented to show the advantages of this approach in terms of computation time

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. (C) 2011 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a compliant mechanism kit as a parallel to the kits available for rigid-body mechanisms. The kit consists of flexible beams and connectors that can be easily hand-assembled using snap fits. The mechanisms assembled using the kit accurately capture the aspects of the topology, shape, and size of joint-free compliant mechanisms. Thus, the kit enables designers to conceive and design new, practicable, single-piece compliant mechanisms that do not require assembly. The concept of the kit also resolves a discrepancy in the finite element (FE) modeling of beam-based compliant mechanisms. The discrepancy arises when two or more beams are joined at one point and thus leading to increased stiffness. After resolving this discrepancy, this work extends the topology optimization to automatically generate designs that can be assembled with the kit for quick and easy validation instead of time-consuming prototyping. Thus, the kit and the accompanying analysis and optimal synthesis procedures comprise a self-contained educational as well as a research and practice toolset for compliant mechanisms. The paper also illustrates how human creativity finds new ways of using the kit beyond the original intended use and how it enables even a novice to design compliant mechanisms. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses. © 2012 American Physical Society.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The experimental implementation of a quantum algorithm requires the decomposition of unitary operators. Here we treat unitary-operator decomposition as an optimization problem, and use a genetic algorithm-a global-optimization method inspired by nature's evolutionary process-for operator decomposition. We apply this method to NMR quantum information processing, and find a probabilistic way of performing universal quantum computation using global hard pulses. We also demonstrate the efficient creation of the singlet state (a special type of Bell state) directly from thermal equilibrium, using an optimum sequence of pulses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind power, as an alternative to fossil fuels, is plentiful, renewable, widely distributed, clean, produces no greenhouse gas emissions during operation, and uses little land. In operation, the overall cost per unit of energy produced is similar to the cost for new coal and natural gas installations. However, the stochastic behaviour of wind speeds leads to significant disharmony between wind energy production and electricity demand. Wind generation suffers from an intermittent characteristics due to the own diurnal and seasonal patterns of the wind behaviour. Both reactive power and voltage control are important under varying operating conditions of wind farm. To optimize reactive power flow and to keep voltages in limit, an optimization method is proposed in this paper. The objective proposed is minimization of the voltage deviations of the load buses (Vdesired). The approach considers the reactive power limits of wind generators and co-ordinates the transformer taps. This algorithm has been tested under practically varying conditions simulated on a test system. The results are obtained on a system of 50-bus real life equivalent power network. The result shows the efficiency of the proposed method.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Using Genetic Algorithm, a global optimization method inspired by nature's evolutionary process, we have improved the quantitative refocused constant-time INEPT experiment (Q-INEPT-CT) of Makela et al. (JMR 204 (2010) 124-130) with various optimization constraints. The improved `average polarization transfer' and `min-max difference' of new delay sets effectively reduces the experimental time by a factor of two (compared with Q-INEPT-CT, Makela et al.) without compromising on accuracy. We also discuss a quantitative spectral editing technique based on average polarization transfer. (C) 2013 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper deals with an optimization based method for synthesis of adjustable planar four-bar, crank-rocker mechanisms. For multiple different and desired paths to be traced by a point on the coupler, a two stage method first determines the parameters of the possible driving dyads. Then the remaining mechanism parameters are determined in the second stage where a least-squares based circle-fitting procedure is used. Compared to existing formulations, the optimization method uses less number of design variables. Two numerical examples demonstrate the effectiveness of the proposed synthesis method. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerically discretized dynamic optimization problems having active inequality and equality path constraints that along with the dynamics induce locally high index differential algebraic equations often cause the optimizer to fail in convergence or to produce degraded control solutions. In many applications, regularization of the numerically discretized problem in direct transcription schemes by perturbing the high index path constraints helps the optimizer to converge to usefulm control solutions. For complex engineering problems with many constraints it is often difficult to find effective nondegenerat perturbations that produce useful solutions in some neighborhood of the correct solution. In this paper we describe a numerical discretization that regularizes the numerically consistent discretized dynamics and does not perturb the path constraints. For all values of the regularization parameter the discretization remains numerically consistent with the dynamics and the path constraints specified in the, original problem. The regularization is quanti. able in terms of time step size in the mesh and the regularization parameter. For full regularized systems the scheme converges linearly in time step size.The method is illustrated with examples.