57 resultados para Tooth Bleaching Agents
Resumo:
A series of 6,11-dihydro-11-oxodibenz[b,e]oxepin-2-acetic acids (DOAA) which are known to be anti-inflammatory agents were studied. The geometries of some of the molecules obtained from X-ray crystallography were used in the calculations as such while the geometries of their derivatives were obtained by local, partial geometry optimization around the Sites of substitution employing the AMI method, keeping the remaining parts of the geometries the same as those in the parent molecules. Molecular electrostatic potential (MEP) mapping was performed for the molecules using optimized hybridization displacement charges (HDC) combined with Lowdin charges, as this charge distribution has been shown earlier to yield near ab initio quality results. A good correlation has been found between the MEP values near the oxygen atoms of the hydroxyl groups of the carboxy groups of the molecules and their anti-inflammatory activities. The result is broadly in agreement with the model proposed earlier by other authors regarding the structure-activity relationship for other similar molecules.
Resumo:
Antibodies specific to avian myeloblastosis virus envelope glycoprotein gp80 were raised. Immunoliposomes were prepared using anti-avian myeloblastosis virus envelope glycoprotein gp80 antibody. The antibody was palmitoylated to facilitate its incorporation into lipid bilayers of liposomes. The fluorescence emission spectra of palmitoylated IgG have exhibited a shift in emission maximum from 330 to 370 nm when it was incorporated into the liposomes. At least 50% of the incorporated antibody molecules were found to be oriented towards the outside in the liposomes. The average size of the liposome was found to be 300 A, and on an average, 15 antibody molecules were shown to be present in a liposome. When adriamycin encapsulated in immunoliposomes was incubated in a medium containing serum for 72 h, about 75% of the drug was retained in liposomes. In vivo localization studies, revealed an enhanced delivery of drug encapsulated in immunoliposomes to the target tissue, as compared to free drug or drug encapsulated in free liposomes. These data suggest a possible use of the drugs encapsulated in immunoliposomes to deliver the drugs in target areas, thereby reducing side effects caused by antiviral agents.
Resumo:
Recently we have reported the effect of (S)-6-aryl urea/thiourea substituted-2-amino-4,5,6,7-tetrahydrobenzod]thiazole derivatives as potent anti-leukemic agents. To elucidate further the Structure Activity Relationship (SAR) studies on the anti-leukemic activity of (S)-2,6-diamino-4,5,6,7 tetrahydrobenzod]thiazole moiety, a series of 2-arlycarboxamide substituted-(S)-6-amino-4,5,6,7-tetrahydrobenzod]thiazole were designed, synthesized and evaluated for their anti-leukemic activity by trypan blue exclusion, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) assays and cell cycle analysis. Results suggest that the position, number and bulkiness of the substituent on the phenyl ring of aryl carboxamide moiety at 2nd position of 6-amino-4,5,6,7-tetrhydrobenzod]thiazole play a key role in inhibiting the proliferation of leukemia cells. Compounds with ortho substitution showed poor activity and with meta and para substitution showed good activity. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
Cobalt(II) complexes of terpyridine bases Co(L)(2)](ClO4)(2) (1-3), where L is 4'-phenyl-2,2':6',2''-terpyridine (ph-tpy in 1), 4'-(9-anthracenyl)-2,2':6',2''-terpyridine (an-tpy in 2) and 4'-(1-pyrenyl)-2,2':6',2''-terpyridine (py-tpy in 3), are prepared and their photo-induced DNA and protein cleavage activity and photocytotoxic property in HeLa cells studied. The 1 : 2 electrolytic and three-electron paramagnetic complexes show a visible band near 550 nm in DMF-Tris-HCl buffer. The complexes 1-3 show emission spectral bands at 355, 421 and 454 nm, respectively, when excited at 287, 368 and 335 nm. The quantum yield values for 1-3 in DMF-H2O (2 : 1 v/v) are 0.025, 0.060 and 0.28, respectively. The complexes are redox active in DMF-0.1 M TBAP. The Co(III)-Co(II) and Co(II)-Co(I) couples appear as quasi-reversible cyclic voltammetric responses near 0.2 and -0.7 V vs. SCE, respectively. Complexes 2 and 3 are avid binders to calf thymus DNA giving K-b value of similar to 10(6) M-1. The complexes show chemical nuclease activity. Complexes 2 and 3 exhibit oxidative cleavage of pUC19 DNA in UV-A and visible light. The DNA photocleavage reaction of 3 at 365 nm shows formation of singlet oxygen and hydroxyl radical species, while only hydroxyl radical formation is evidenced in visible light. Complexes 2 and 3 show non-specific photo-induced bovine serum albumin protein cleavage activity at 365 nm. The an-tpy and py-tpy complexes exhibit significant photocytotoxicity in HeLa cervical cancer cells on exposure to visible light giving IC50 values of 24.2 and 7.6 mu M, respectively. Live cell imaging study shows accumulation of the complexes in the cytosol of HeLa cancer cells.
Resumo:
Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-toluenesulfonic acid 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.
Resumo:
Five compounds, viz. 1,1'-ferrocenediyldiethylidene bis(thiocarbonohydrazide) (DAFT), 1,1-diacetylferrocene disemicarbazone (DAFS), 1,1-diacetylferrocenebenzoyl hydrazone (FDBAH), 1,1-diacetylferrocene-p-nitrobenzoyl hydrazone (FDNBAH), and p-tolenesulfonic acid, 1,1'-ferrocenediyldiethylidene dihydrazide (TFDD) were found to be bonding agents as well as burning-rate modifiers for the ammonium perchlorate + hydroxy-terminated polybutadiene system. The tensile strength and percentage elongation significantly increased in the presence of these bonding agents (except FDBAH). The bonding agents generally did not adversely affect the slurry viscosity during processing. The bonding sites were located by infrared spectroscopy, supported by determination of the dissolution kinetics of the bonding agents and scanning electron microscopy. The bonding agents did not undergo any side-reactions with the curing agents.
Resumo:
Three new complexes of Cu(I) have been synthesized using ancillary ligands like thiopyrimidine (tp) a modified nucleobase, and nicotinamide (nie) or vitamin B3, and characterized by spectroscopy and X-ray crystallography. In vitro cytotoxicity studies of the complexes on various human cancer cell lines such as Colo295, H226, HOP62, K562, MCF7 and T24 show that Cu(PPh3)(2)(tp)Cl] and Cu(PPh3)(2)(tp)ClO4 (2) have in vitro cytotoxicity comparable to cisplatin. Complex Cu(nic)(3)PPh3]ClO4 (3) is non-toxic and increases the life span by about 55 % in spontaneous breast tumor model. DNA binding and cleavage studies show that complex (3) binds to calf thymus DNA with an apparent binding constant of 5.9 x 10(5)M and completely cleaves super-coiled DNA at a concentration of 400 mu M, whereas complexes (1) and (2) do not bind DNA and do not show any cleavage even at 1200 mu M. Thus, complex (3) may exhibit cytotoxicity Via DNA cleavage whereas the mechanism of cytotoxicity of (1) and (2) probably involves a different pathway.
Resumo:
Levamisole, the imidazo2,1-b]thiazole derivative has been reported as a potential antitumor agent. In the present study, we synthesized, characterized and evaluated biological activity of its novel analogues with substitution in the aralkyl group and on imidazothiadiazole molecules with same chemical backbone but different side chains namely 2-aralkyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]thiadiazoles (SCR1), 2-aralkyl-5-bromo-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadiaz oles (SCR2), 2-aralkyl-5-formyl-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-thiadia zoles (SCR3) and 2-aralkyl-5-thiocyanato-6-(4'-fluorophenyl)-imidazo2,1-b]1,3,4]-th iadiazoles (SCR4) on leukemia cells. The cytotoxic studies showed that 3a, 4a, and 4c exhibited strong cytotoxicity while others had moderate cytotoxicity. Among these we chose 4a (IC50, 8 mu M) for understanding its mechanism of cytotoxicity. FACS analysis in conjunction with mitochondrial membrane potential and DNA fragmentation studies indicated that 4a induced apoptosis without cell cycle arrest suggesting that it could be used as a potential chemotherapeutic agent. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Reduction of carbon emissions is of paramount importance in the context of global warming. Countries and global companies are now engaged in understanding systematic ways of achieving well defined emission targets. In fact, carbon credits have become significant and strategic instruments of finance for countries and global companies. In this paper, we formulate and suggest a solution to the carbon allocation problem, which involves determining a cost minimizing allocation of carbon credits among different emitting agents. We address this challenge in the context of a global company which is faced with the challenge of determining an allocation of carbon credit caps among its divisions in a cost effective way. The problem is formulated as a reverse auction problem where the company plays the role of a buyer or carbon planning authority and the different divisions within the company are the emitting agents that specify cost curves for carbon credit reductions. Two natural variants of the problem: (a) with unlimited budget and (b) with limited budget are considered. Suitable assumptions are made on the cost curves and in each of the two cases we show that the resulting problem formulation is a knapsack problem that can be solved optimally using a greedy heuristic. The solution of the allocation problem provides critical decision support to global companies engaged seriously in green programs.
Resumo:
We report the observation of giant photo induced optical bleaching in Sb/As(2)S(3) multilayered film at room and liquid He temperatures, when irradiated with 532 nm laser at moderate intensities. The experimental results show a dramatic increase in transmittance near the band gap regime at both the temperatures; however the rates at which transmission change occurs are rather slow at low temperature. The huge change in transmission is due to the photo induced intermixing of As(2)S(3) layer with Sb. Our XPS measurements show that photo induced intermixing occurs through the wrong homopolar bonds, which under actinic light illumination are converted into energetically favored hetropolar bonds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Three new series of 4-hydroxy-8-trifluoromethyl-quinoline derivatives were synthesized through multi step reactions. All the newly synthesized compounds were characterized by spectral and elemental analyses. The structure of 5j was evidenced by X-ray crystallographic study. The newly synthesized title compounds were evaluated for their antimicrobial activities including antimycobacterial activity. Amongst the tested compounds, 5b, 5e, 5h, 5j, 6c and 7c displayed promising antimicrobial activity. The mode of action of these active compounds was carried out by docking of receptor enoyl-ACP reductase with newly synthesized candidate ligands, 5b, 5e, 5h, 5j and 6c. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
A major myonecrotic zinc containing metalloprotease `malabarin' with thrombin like activity was purified by the combination of gel permeation and anion exchange chromatography from T. malabaricus snake venom. MALDI-TOF analysis of malabarin indicated a molecular mass of 45.76 kDa and its N-terminal sequence was found to be Ile-Ile-Leu-Pro(Leu)-Ile-Gly-Val-Ile-Leu(Glu)-Thr-Thr. Atomic absorption spectral analysis of malabarin raveled the association of zinc metal ion. Malabarin is not lethal when injected i.p. or i.m. but causes extensive hemorrhage and degradation of muscle tissue within 24 hours. Sections of muscle tissue under light microscope revealed hemorrhage and congestion of blood vessel during initial stage followed by extensive muscle fiber necrosis with elevated levels of serum creatine kinase and lactate dehydrogenase activity. Malabarin also exhibited strong procoagulant action and its procoagulant action is due to thrombin like activity; it hydrolyzes fibrinogen to form fibrin clot. The enzyme preferentially hydrolyzes A alpha followed by B beta subunits of fibrinogen from the N-terminal region and the released products were identified as fibrinopeptide A and fibrinopeptide B by MALDI. The myonecrotic, fibrinogenolytic and subsequent procoagulant activities of malabarin was neutralized by specific metalloprotease inhibitors such as EDTA, EGTA and 1, 10-phenanthroline but not by PMSF a specific serine protease inhibitor. Since there is no antivenom available to neutralize local toxicity caused by T. malabaricus snakebite, EDTA chelation therapy may have more clinical relevance over conventional treatment.