124 resultados para Thermodynamics.


Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The activity of strontium in liquid Al-Sr alloys (X(Sr) less-than-or-equal-to 0.17) at 1323 K has been determined using the Knudsen effusion-mass loss technique. At higher concentrations (X(Sr) greater-than-or-equal-to 0.28), the activity of strontium has been determined by the pseudoisopiestic technique. Activity of aluminium has been derived by Gibbs-Duhem integration. The concentration - concentration structure factor of Bhatia and Thornton at zero wave vector has been computed from the thermodynamic data. The behaviour of the mean square thermal fluctuation in composition and the thermodynamic mixing functions suggest association tendencies in the liquid state. The associated solution model with Al2Sr as the predominant complex can account for the properties of the liquid alloy. Thermodynamic data for the intermetallic compunds in the Al-Sr system have been derived using the phase diagram and the Gibbs' energy and enthalpy of mixing of liquid alloys. The data indicate the need for redetermination of the phase diagram near the strontium-rich corner.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Removal of impurity elements from hot metal is essential in basic oxygen steelmaking. Oxidation of phosphorus from hot metal has been studied by several authors since the early days of steelmaking. Influence of different parameters on the distribution of phosphorus, seen during the recent work of the authors, differs somewhat from that reported earlier. On the other hand, removal of sulphur during steelmaking has drawn much less attention. This may be due to the magnitude of desulphurisation in oxygen steelmaking being relatively low and desulphurisation during hot metal pre-treatment or in the ladle furnace offering better commercial viability Further, it is normally accepted that sulphur is removed to steelmaking slag in the form of sulphide only However, recent investigations have indicated that a significant amount of sulphur removed during basic oxygen steelmaking can exist in the form of sulphate in the slag under oxidising conditions. The distribution of sulphur during steelmaking becomes more important in the event of carry-over of sulphur-rich blast-furnace slag, which increases sulphur load in the BOF. The chemical nature of sulphur in this slag undergoes a gradual transition from sulphide to sulphate as the oxidative refining progresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Classical description of thermodynamic properties during glass transition has been questioned by the entropy-loss model. The uncompensated loss of entropy at the glass transition temperature and zero residual entropy is at the heart of the controversy. Both the models are critically reviewed. A unified model is presented which incorporates features of both entropy loss and residual entropy. It implies two different types of contributions to the entropy of the supercooled liquid, one of which vanishes at the transition and the other which contributes to residual entropy. Entropy gain during spontaneous relaxation of glass, and the nature of heat capacity `hysteresis' during cooling and heating through the glass transition range support the proposed model. Experiments are outlined for differentiating between the models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optimum values of the solution parameters of a multiparameter integral free-energy function have been determined using experimental data from the Ga-Sb system. The equation is represented as DELTAG(xs) = x(1 - x)[(1 - x)(a1 + a2T + a3T ln T) + x(a4 + a5T + a6T ln T) + x(1 - x)(a7 + a8T + a9xT)].The integral and the corresponding partial form of the free energy function have been found to be of use when interpreting the high temperature thermodynamic data, atomic interactions and phase equilibria in the Ga-Sb system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A four and a five-parameter functions are used to analyse and interpret the high and low temperature thermodynamic data and phase equilibria in the Ga-In system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining site of WBAI is extended and encompasses all the residues of blood group A-reactive trisaccharide [GalNAcalpha3Galbeta4Glc]. Though both of the fucose residues of A-pentasaccharide [GalNAcalpha(Fucalpha2)3Galbeta(Fucalpha3)4Glc] do not directly interact, with the combining site they thermodynamically favour the interaction of GalNAcalpha3Galbeta4Glc part of the molecule by imposing a sterically favourable orientation of the binding epitope viz. GalNAcalpha3Galbeta4Glc of the saccharide. Binding of sugars is driven by enthalpy and is devoid of heat capacity changes. This together with enthalpy-entropy compensation observed for these processes underscore the importance of water reorganization as being one of the principal determinant of protein-sugar interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interest in the applicability of fluctuation theorems to the thermodynamics of single molecules in external potentials has recently led to calculations of the work and total entropy distributions of Brownian oscillators in static and time-dependent electromagnetic fields. These calculations, which are based on solutions to a Smoluchowski equation, are not easily extended to a consideration of the other thermodynamic quantity of interest in such systems-the heat exchanges of the particle alone-because of the nonlinear dependence of the heat on a particle's stochastic trajectory. In this paper, we show that a path integral approach provides an exact expression for the distribution of the heat fluctuations of a charged Brownian oscillator in a static magnetic field. This approach is an extension of a similar path integral approach applied earlier by our group to the calculation of the heat distribution function of a trapped Brownian particle, which was found, in the limit of long times, to be consistent with experimental data on the thermal interactions of single micron-sized colloids in a viscous solvent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experiments and computer simulations demonstrate that water spontaneously fills the hydrophobic cavity of a carbon nanotube. To gain a quantitative thermodynamic understanding of this phenomenon, we use the recently developed two phase thermodynamics method to compute translational and rotational entropies of confined water molecules inside single-walled carbon nanotubes and show that the increase in energy of a water molecule inside the nanotube is compensated by the gain in its rotational entropy. The confined water is in equilibrium with the bulk water and the Helmholtz free energy per water molecule of confined water is the same as that in the bulk within the accuracy of the simulation results. A comparison of translational and rotational spectra of water molecules confined in carbon nanotubes with that of bulk water shows significant shifts in the positions of the spectral peaks that are directly related to the tube radius. (C) 2011 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The flow and vaporization behaviors of long-chain esters of varying molecular weights (300-900) ana branching (linear, Y-shaped, and +-shaped molecules) have been studied. The flow behavior is found to depend on the structure as well as the molecular weight. Below a molecular weight of 600, the molecules flow wholly but above this, segmental motion occurs, and the flow becomes independent of the molecular weight which is explained from the blob model. The blob concept demonstrates that the hole of a size of about 11 angstrom is needed for the flow to occur and it is much less than the size of the molecule. The blob size is observed to slightly decrease along the series linear and Y- and +-branched esters. The heat of vaporization is found to be independent of the molecular structure since the molecules acquire a coiled spherical shape during vaporization and hence depends only on the molecular weight. A significant structural effect is observed for the esters on their glass transition temperature (T(g)). The T(g) vs molecular weight plot displays contrasting trend for linear and +-branched esters, with Y esters showing an intermediate behavior. It is explained from their molecular packing and entanglement as visualized by the blob model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamic analysis of a non-polluting process for the effective treatment of lean multimetallic sulphide ores is presented. The sulphide ore is roasted with sodium chloride in air. Metal sulphides are converted to chlorides that can be separated from the unaffected gangue material. At a temperature of 1100 K the chlorides are present both in gaseous and in condensed states. Volatile chlorides can be easily removed and subsequently condensed. The chlorides present in the condensed state can be leached to separate them from the gangue. The sulphur is trapped as Na2SO4 and thus SO2 emission is minimized. Ellingham diagrams are used to compare data for a large number of elements. The major thermodynamic driving force is provided by the higher stability of Na2SO4 relative to NaCl.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A solid-state miscibility gap in the pseudo-binary system BaO-SrO is delineated by X-ray diffraction studies on samples equilibrated either in vacuum or under flowing inert gas at temperatures between 1073 and 1423 K. For the SrxBa1-xO solid solution an asymmetric phase boundary, characterized by a critical temperature of 1356 (+/-4) K and composition x=0.55 (+/-0.008), is obtained. Thermodynamic mixing properties of the solid solution, derived from the experimental phase boundary compositions and temperatures, can be represented by the expression: Delta G(E)=x(1-x){33 390-7.09T)x+(29 340-6.23T)(1-x)} J mol(-1)It is necessary to include excess entropy terms to obtain a good fit to the experimental data. The chemical spinodal curve is computed from the thermodynamic parameters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The statistical thermodynamics of adsorption in caged zeolites is developed by treating the zeolite as an ensemble of M identical cages or subsystems. Within each cage adsorption is assumed to occur onto a lattice of n identical sites. Expressions for the average occupancy per cage are obtained by minimizing the Helmholtz free energy in the canonical ensemble subject to the constraints of constant M and constant number of adsorbates N. Adsorbate-adsorbate interactions in the Brag-Williams or mean field approximation are treated in two ways. The local mean field approximation (LMFA) is based on the local cage occupancy and the global mean field approximation (GMFA) is based on the average coverage of the ensemble. The GMFA is shown to be equivalent in formulation to treating the zeolite as a collection of interacting single site subsystems. In contrast, the treatment in the LMFA retains the description of the zeolite as an ensemble of identical cages, whose thermodynamic properties are conveniently derived in the grand canonical ensemble. For a z coordinated lattice within the zeolite cage, with epsilon(aa) as the adsorbate-adsorbate interaction parameter, the comparisons for different values of epsilon(aa)(*)=epsilon(aa)z/2kT, and number of sites per cage, n, illustrate that for -1 0. We compare the isotherms predicted with the LMFA with previous GMFA predictions [K. G. Ayappa, C. R. Kamala, and T. A. Abinandanan, J. Chem. Phys. 110, 8714 (1999)] (which incorporates both the site volume reduction and a coverage-dependent epsilon(aa)) for xenon and methane in zeolite NaA. In all cases the predicted isotherms are very similar, with the exception of a small steplike feature present in the LMFA for xenon at higher coverages. (C) 1999 American Institute of Physics. [S0021-9606(99)70333-8].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present investigation calculates the surface tension and adsorption functions of the Fe-S, Fe-N, and Fe-S-N melts at 1823 K using the modified form of Butler's equations and the derived values of the surface interaction parameters of the systems. The calculated values are found to be in good agreement with those of the experimental data of the systems. The present analysis indicates similar adsorption behavior of sulfur for the Fe-S and Fe-S-N systems at 1823 K. Although a linear adsorption behavior is observed in the Fe-N system, an inverse relationship in the adsorption behavior exists between sulur and nitrogen in the Fe-S-N system.