80 resultados para The Lattice Solid Model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Onsager model for the secondary flow field in a high-speed rotating cylinder is extended to incorporate the difference in mass of the two species in a binary gas mixture. The base flow is an isothermal solid-body rotation in which there is a balance between the radial pressure gradient and the centrifugal force density for each species. Explicit expressions for the radial variation of the pressure, mass/mole fractions, and from these the radial variation of the viscosity, thermal conductivity and diffusion coefficient, are derived, and these are used in the computation of the secondary flow. For the secondary flow, the mass, momentum and energy equations in axisymmetric coordinates are expanded in an asymptotic series in a parameter epsilon = (Delta m/m(av)), where Delta m is the difference in the molecular masses of the two species, and the average molecular mass m(av) is defined as m(av) = (rho(w1)m(1) + rho(w2)m(2))/rho(w), where rho(w1) and rho(w2) are the mass densities of the two species at the wall, and rho(w) = rho(w1) + rho(w2). The equation for the master potential and the boundary conditions are derived correct to O(epsilon(2)). The leading-order equation for the master potential contains a self-adjoint sixth-order operator in the radial direction, which is different from the generalized Onsager model (Pradhan & Kumaran, J. Fluid Mech., vol. 686, 2011, pp. 109-159), since the species mass difference is included in the computation of the density, viscosity and thermal conductivity in the base state. This is solved, subject to boundary conditions, to obtain the leading approximation for the secondary flow, followed by a solution of the diffusion equation for the leading correction to the species mole fractions. The O(epsilon) and O(epsilon(2)) equations contain inhomogeneous terms that depend on the lower-order solutions, and these are solved in a hierarchical manner to obtain the O(epsilon) and O(epsilon(2)) corrections to the master potential. A similar hierarchical procedure is used for the Carrier-Maslen model for the end-cap secondary flow. The results of the Onsager hierarchy, up to O(epsilon(2)), are compared with the results of direct simulation Monte Carlo simulations for a binary hard-sphere gas mixture for secondary flow due to a wall temperature gradient, inflow/outflow of gas along the axis, as well as mass and momentum sources in the flow. There is excellent agreement between the solutions for the secondary flow correct to O(epsilon(2)) and the simulations, to within 15 %, even at a Reynolds number as low as 100, and length/diameter ratio as low as 2, for a low stratification parameter A of 0.707, and when the secondary flow velocity is as high as 0.2 times the maximum base flow velocity, and the ratio 2 Delta m/(m(1) + m(2)) is as high as 0.5. Here, the Reynolds number Re = rho(w)Omega R-2/mu, the stratification parameter A = root m Omega R-2(2)/(2k(B)T), R and Omega are the cylinder radius and angular velocity, m is the molecular mass, rho(w) is the wall density, mu is the viscosity and T is the temperature. The leading-order solutions do capture the qualitative trends, but are not in quantitative agreement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we derive an approach for the effective utilization of thermodynamic data in phase-field simulations. While the most widely used methodology for multi-component alloys is following the work by Eiken et al. (2006), wherein, an extrapolative scheme is utilized in conjunction with the TQ interface for deriving the driving force for phase transformation, a corresponding simplistic method based on the formulation of a parabolic free-energy model incorporating all the thermodynamics has been laid out for binary alloys in the work by Folch and Plapp (2005). In the following, we extend this latter approach for multi-component alloys in the framework of the grand-potential formalism. The coupling is applied for the case of the binary eutectic solidification in the Cr-Ni alloy and two-phase solidification in the ternary eutectic alloy (Al-Cr-Ni). A thermodynamic justification entails the basis of the formulation and places it in context of the bigger picture of Integrated Computational Materials Engineering. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the vicinity of a Feshbach resonance, a system of ultracold atoms in an optical lattice undergoes rich physical transformations which involve molecule formation and hopping of molecules on the lattice and thus goes beyond a single-band Hubbard model description. We explore theoretically the response of this system to a harmonic modulation of the magnetic field, and thus of the scattering length, across the Feshbach resonance. In the regime in which the single-band Hubbard model is still valid, we provide results for the doublon production as a function of the various parameters, such as frequency, amplitude, etc., that characterize the field modulation, as well as the lattice depth. The method may uncover a route towards the efficient creation of ultracold molecules and also provide an alternative to conventional lattice-depth-modulation spectroscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider an enhancement of the credit risk+ model to incorporate correlations between sectors. We model the sector default rates as linear combinations of a common set of independent variables that represent macro-economic variables or risk factors. We also derive the formula for exact VaR contributions at the obligor level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The minimal supergravity model predicts the polarization of the tau coming from the stau to bino decay in the co-annihilation region to +1. This can be exploited to extract this soft tau signal at LHC and also to measure the tiny mass differences between the stau and the bi lightest superparticle. Moreover, this strategy will be applicable for a wider class of bino lightest superparticle models, where the lighter stau has a right component at least of similar size as the left.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A strong-coupling expansion for the Green's functions, self-energies, and correlation functions of the Bose-Hubbard model is developed. We illustrate the general formalism, which includes all possible (normal-phase) inhomogeneous effects in the formalism, such as disorder or a trap potential, as well as effects of thermal excitations. The expansion is then employed to calculate the momentum distribution of the bosons in the Mott phase for an infinite homogeneous periodic system at zero temperature through third order in the hopping. By using scaling theory for the critical behavior at zero momentum and at the critical value of the hopping for the Mott insulator–to–superfluid transition along with a generalization of the random-phase-approximation-like form for the momentum distribution, we are able to extrapolate the series to infinite order and produce very accurate quantitative results for the momentum distribution in a simple functional form for one, two, and three dimensions. The accuracy is better in higher dimensions and is on the order of a few percent relative error everywhere except close to the critical value of the hopping divided by the on-site repulsion. In addition, we find simple phenomenological expressions for the Mott-phase lobes in two and three dimensions which are much more accurate than the truncated strong-coupling expansions and any other analytic approximation we are aware of. The strong-coupling expansions and scaling-theory results are benchmarked against numerically exact quantum Monte Carlo simulations in two and three dimensions and against density-matrix renormalization-group calculations in one dimension. These analytic expressions will be useful for quick comparison of experimental results to theory and in many cases can bypass the need for expensive numerical simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have studied the resistivity and thermopower of the solid solution LaNi1-xCoxO3 in the temperature range 1.4K-300K. Effect of interaction and localization are seen in the low temperature transport data for x<0.55. A negative anomaly in the thermopower has been observed at low temperature for 0.1

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The size effect on the lattice parameter of ionic KCl nanocrystals was studied systematically during mechanical milling of Pure KCl powder under vacuum. The results suggest anomalous lattice expansion, with the lattice parameter increasing from 6.278 angstrom at d = 6 mu m to 6.30307 angstrom at d = 85 mn. The defects generated during ball milling of KCl and surface stress are deemed to be responsible for this lattice parameter expansion. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a theoretical calculation of the dynamic structure factor, S(k, ω), at the liquid-solid interface for large values of the wavevector k. An analytic expression is derived which shows the evolution of the elastic peak as the solid surface is approached from the liquid side.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The neutron-antineutron transition amplitude caused by an effective six fermion interaction with strength λeff is calculated within the context of the MIT Bag Model. The transition mass δm is found to have the value λeff×3×10−4(GeV6).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation 1 and principal axis at azimuth 1, and a pure rotator of power 2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanoindentation technique was employed to measure the changes in mechanical properties of a glass preform subjected to different levels of UV exposure. The results reveal that short-term exposure leads to an appreciable increase in the Young's modulus (E), suggesting the densification of the glass, confirming the compaction-densification model. However, on prolonged exposure, E decreases, which provides what we believe to be the first direct evidence of dilation in the glass leading into the Type IIA regime. The present results rule out the hypothesis that continued exposure leads to an irreversible compaction and prove that index modulation regimes are intrinsic to the glass matrix.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Any stressed photoelastic medium can be reduced to an optically equivalent model consisting of a linear retarder, with retardation delta1 and principal axis at azimuth phgr1, and a pure rotator of power phgr2. The paper describes two simple methods to determine these quantities experimentally. Further, a method is described to overcome the problem of rotational effects in scattered-light investigations. This new method makes use of the experimentally determined characteristic parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the possibility of using W pair production and leptonic decay of one of the W's at the ILC with polarized beams as a probe of the Littlest Higgs Model. We consider cross-sections, polarization fractions of the W's, leptonic decay energy and angular distributions, and left-right polarization asymmetry as probes of the model. With parameter values allowed by present experimental constraints detectable effects on these observables at typical ILC energies of 500 GeV and 800 GeV will be present. Beam polarization is further found to enhance the sensitivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Perfectly hard particles are those which experience an infinite repulsive force when they overlap, and no force when they do not overlap. In the hard-particle model, the only static state is the isostatic state where the forces between particles are statically determinate. In the flowing state, the interactions between particles are instantaneous because the time of contact approaches zero in the limit of infinite particle stiffness. Here, we discuss the development of a hard particle model for a realistic granular flow down an inclined plane, and examine its utility for predicting the salient features both qualitatively and quantitatively. We first discuss Discrete Element simulations, that even very dense flows of sand or glass beads with volume fraction between 0.5 and 0.58 are in the rapid flow regime, due to the very high particle stiffness. An important length scale in the shear flow of inelastic particles is the `conduction length' delta = (d/(1 - e(2))(1/2)), where d is the particle diameter and e is the coefficient of restitution. When the macroscopic scale h (height of the flowing layer) is larger than the conduction length, the rates of shear production and inelastic dissipation are nearly equal in the bulk of the flow, while the rate of conduction of energy is O((delta/h)(2)) smaller than the rate of dissipation of energy. Energy conduction is important in boundary layers of thickness delta at the top and bottom. The flow in the boundary layer at the top and bottom is examined using asymptotic analysis. We derive an exact relationship showing that the a boundary layer solution exists only if the volume fraction in the bulk decreases as the angle of inclination is increased. In the opposite case, where the volume fraction increases as the angle of inclination is increased, there is no boundary layer solution. The boundary layer theory also provides us with a way of understanding the cessation of flow when at a given angle of inclination when the height of the layer is decreased below a value h(stop), which is a function of the angle of inclination. There is dissipation of energy due to particle collisions in the flow as well as due to particle collisions with the base, and the fraction of energy dissipation in the base increases as the thickness decreases. When the shear production in the flow cannot compensate for the additional energy drawn out of the flow due to the wall collisions, the temperature decreases to zero and the flow stops. Scaling relations can be derived for h(stop) as a function of angle of inclination.