18 resultados para Tanks (containers)
Resumo:
Solar distillation can be used to produce potable water from contaminated water. However, studies show that ions such as F(-) and NO(3)(-) occur in distillates from solar stills. In order to understand the reasons for this behavior, imaging and distillation experiments were conducted. White dots were seen in the vapor space above the interface of hot water poured into containers. The concentrations of various ions such as F(-) and SO(4)(2-) in the distillates from thermal and solar distillation experiments were roughly comparable when the feed consisted of deionized water and also solutions having fluoride concentrations of 100 and 10 000 mg/L. These observations suggest that aerosols enter the distillation setup through leaks and provide nuclei for the condensation of water vapor. The water-soluble component of aerosols dissolves in the drops formed, and some of the drops are transferred to the distillate by buoyancy-driven convection.
Resumo:
In space application the precision level measurement of cryogenic liquids in the storage tanks is done using triple redundant capacitance level sensor, for control and safety point of view. The linearity of each sensor element depends upon the cylindricity and concentricity of the internal and external electrodes. The complexity of calibrating all sensors together has been addressed by two step calibration methodology which has been developed and used for the calibration of six capacitance sensors. All calibrations are done using Liquid Nitrogen (LN2) as a cryogenic fluid. In the first step of calibration, one of the elements of Liquid Hydrogen (LH2) level sensor is calibrated using 700mm eleven point discrete diode array. Four wire method has been used for the diode array. Thus a linearity curve for a single element of LH2 is obtained. In second step of calibration, using the equation thus obtained for the above sensor, it is considered as a reference for calibrating remaining elements of the same LH2 sensor and other level sensor (either Liquid Oxygen (LOX) or LH2). The elimination of stray capacitance for the capacitance level probes has been attempted. The automatic data logging of capacitance values through GPIB is done using LabVIEW 8.5.
Resumo:
Detection of petroleum leakages in pipelines and storage tanks is a very important as it may lead to significant pollution of the environment, accidental hazards, and also it is a very important fuel resource. Petroleum leakage detection sensor based on fiber optics was fabricated by etching the fiber Bragg grating (FBG) to a region where the total internal reflection is affected. The experiment shows that the reflected Bragg's wavelength and intensity goes to zero when etched FBG is in air and recovers Bragg's wavelength and intensity when it is comes in contact with petroleum or any external fluid. This acts as high sensitive, fast response fluid optical switch in liquid level sensing, petroleum leakage detection etc. In this paper we present our results on using this technique in petroleum leakage detection.