49 resultados para THEOREMS
Resumo:
The dilaton action in 3 + 1 dimensions plays a crucial role in the proof of the a-theorem. This action arises using Wess-Zumino consistency conditions and crucially relies on the existence of the trace anomaly. Since there are no anomalies in odd dimensions, it is interesting to ask how such an action could arise otherwise. Motivated by this we use the AdS/CFT correspondence to examine both even and odd dimensional conformal field theories. We find that in even dimensions, by promoting the cutoff to a field, one can get an action for this field which coincides with the Wess-Zumino action in flat space. In three dimensions, we observe that by finding an exact Hamilton-Jacobi counterterm, one can find a non-polynomial action which is invariant under global Weyl rescalings. We comment on how this finding is tied up with the F-theorem conjectures.
Resumo:
The purpose of this article is to study Lipschitz CR mappings from an h-extendible (or semi-regular) hypersurface in . Under various assumptions on the target hypersurface, it is shown that such mappings must be smooth. A rigidity result for proper holomorphic mappings from strongly pseudoconvex domains is also proved.
Resumo:
Given a smooth, projective variety Y over an algebraically closed field of characteristic zero, and a smooth, ample hyperplane section X subset of Y, we study the question of when a bundle E on X, extends to a bundle epsilon on a Zariski open set U subset of Y containing X. The main ingredients used are explicit descriptions of various obstruction classes in the deformation theory of bundles, together with Grothendieck-Lefschetz theory. As a consequence, we prove a Noether-Lefschetz theorem for higher rank bundles, which recovers and unifies the Noether-Lefschetz theorems of Joshi and Ravindra-Srinivas.
Resumo:
In this paper, we present an improved load distribution strategy, for arbitrarily divisible processing loads, to minimize the processing time in a distributed linear network of communicating processors by an efficient utilization of their front-ends. Closed-form solutions are derived, with the processing load originating at the boundary and at the interior of the network, under some important conditions on the arrangement of processors and links in the network. Asymptotic analysis is carried out to explore the ultimate performance limits of such networks. Two important theorems are stated regarding the optimal load sequence and the optimal load origination point. Comparative study of this new strategy with an earlier strategy is also presented.
Resumo:
In this article, a non-autonomous (time-varying) semilinear system is considered and its approximate controllability is investigated. The notion of 'bounded integral contractor', introduced by Altman, has been exploited to obtain sufficient conditions for approximate controllability. This condition is weaker than Lipschitz condition. The main theorems of Naito [11, 12] are obtained as corollaries of our main results. An example is also given to show how our results weaken the conditions assumed by Sukavanam[17].
Resumo:
This splitting techniques for MARKOV chains developed by NUMMELIN (1978a) and ATHREYA and NEY (1978b) are used to derive an imbedded renewal process in WOLD's point process with MARKOV-correlated intervals. This leads to a simple proof of renewal theorems for such processes. In particular, a key renewal theorem is proved, from which analogues to both BLACKWELL's and BREIMAN's forms of the renewal theorem can be deduced.
Resumo:
Pion photoproduction processes14Ngs(gamma, pgr +)14C and14Ngs(gamma, pgr –)14O have been studied in the threshold region. These processes provide an excellent tool to study the corrections to soft pion theorems and Kroll-Ruderman limit as applied to nuclear processes. The agreement with the available experimental data for these processes is better with the empirical wave functions while the shell-model wave functions predict a much higher value. Detailed experimental studies of these reactions at threshold, it is shown, are expected to lead to a better understanding of the shell-model inputs and radial distributions in the 1p state. We thank Dr. S.C.K. Nair for a helpful discussion during the initial stages of this work. One of us (MVN) thanks Dr. J.M. Laget for sending some unpublished data on pion photoproduction. He is also thankful to Dr. J. Pasupathy and Dr. R. Rajaraman for their interest and encouragement.
Resumo:
A simple yet efficient method for the minimization of incompletely specified sequential machines (ISSMs) is proposed. Precise theorems are developed, as a consequence of which several compatibles can be deleted from consideration at the very first stage in the search for a minimal closed cover. Thus, the computational work is significantly reduced. Initial cardinality of the minimal closed cover is further reduced by a consideration of the maximal compatibles (MC's) only; as a result the method converges to the solution faster than the existing procedures. "Rank" of a compatible is defined. It is shown that ordering the compatibles, in accordance with their rank, reduces the number of comparisons to be made in the search for exclusion of compatibles. The new method is simple, systematic, and programmable. It does not involve any heuristics or intuitive procedures. For small- and medium-sized machines, it canle used for hand computation as well. For one of the illustrative examples used in this paper, 30 out of 40 compatibles can be ignored in accordance with the proposed rules and the remaining 10 compatibles only need be considered for obtaining a minimal solution.
Resumo:
Two key parameters in the outage characterization of a wireless fading network are the diversity and the degrees of freedom (DOF). These two quantities represent the two endpoints of the diversity multiplexing gain tradeoff, In this paper, we present max-flow min-cut type theorems for computing both the diversity and the DOF of arbitrary single-source single-sink networks with nodes possessing multiple antennas. We also show that an amplify-and-forward protocol is sufficient to achieve the same. The DOF characterization is obtained using a conversion to a deterministic wireless network for which the capacity was recently found. This conversion is operational in the sense that a capacity-achieving scheme for the deterministic network can be converted into a DOF-achieving scheme for the fading network. We also show that the diversity result easily extends to multisource multi-sink networks whereas the DOF result extends to a single-source multi-cast network. Along the way, we prove that the zero error capacity of the deterministic network is the same as its c-error capacity.
Resumo:
In this article we study the one-dimensional random geometric (random interval) graph when the location of the nodes are independent and exponentially distributed. We derive exact results and limit theorems for the connectivity and other properties associated with this random graph. We show that the asymptotic properties of a graph with a truncated exponential distribution can be obtained using the exponential random geometric graph. © 2007 Wiley Periodicals, Inc. Random Struct. Alg., 2008.
Resumo:
Motivated by developments in spacecraft dynamics, the asymptotic behaviour and boundedness of solution of a special class of time varying systems in which each term appears as the sum of a constant and a time varying part, are analysed in this paper. It is not possible to apply standard textbook results to such systems, which are originally in second order. Some of the existing results are reformulated. Four theorems which explore the relations between the asymptotic behaviour/boundedness of the constant coefficient system, obtained by equating the time varying terms to zero, to the corresponding behaviour of the time varying system, are developed. The results show the behaviour of the two systems to be intimately related, provided the solutions of the constant coefficient system approach zero are bounded for large values of time, and the time varying terms are suitably restrained. Two problems are tackled using these theorems.
Resumo:
We consider the slotted ALOHA protocol on a channel with a capture effect. There are M
Resumo:
In this article we plan to demonstrate the usefulness of `Gutzmer's formula' in the study of various problems related to the Segal-Bargmann transform. Gutzmer's formula is known in several contexts: compact Lie groups, symmetric spaces of compact and noncompact type, Heisenberg groups and Hermite expansions. We apply Gutzmer's formula to study holomorphic Sobolev spaces, local Peter-Weyl theorems, Paley-Wiener theorems and Poisson semigroups.
Resumo:
Some theorems derived recently by the authors on the stability of multidimensional linear time varying systems are reported in this paper. To begin with, criteria based on Liapunov�s direct method are stated. These are followed by conditions on the asymptotic behaviour and boundedness of solutions. Finally,L 2 andL ? stabilities of these systems are discussed. In conclusion, mention is made of some of the problems in aerospace engineering to which these theorems have been applied.
Resumo:
The shape of the vector and scalar K-l3 form factors is investigated by exploiting analyticity and unitarity in a model-independent formalism. The method uses as input dispersion relations for certain correlators computed in perturbative QCD in the deep Euclidean region, soft-meson theorems, and experimental information on the phase and modulus of the form factors along the elastic part of the unitarity cut. We derive constraints on the coefficients of the parameterizations valid in the semileptonic range and on the truncation error. The method also predicts low-energy domains in the complex t plane where zeros of the form factors are excluded. The results are useful for K-l3 data analyses and provide theoretical underpinning for recent phenomenological dispersive representations for the form factors.