28 resultados para TGM concentration in air
Resumo:
Iron nanostructures with morphology ranging from discrete nanoparticles to nearly monodisperse hierarchical nanostructures have been successfully synthesized using solvated metal atom dispersion (SMAD) method. Such a morphological evolution was realized by tuning the molar ratio of ligand to metal. Surface energy minimization in confluence with strong magnetic interactions and ligand-based stabilization results in the formation of nanospheres of iron. The as-prepared amorphous iron nanostructures exhibit remarkably high coercivity in comparison to the discrete nanoparticles and bulk counterpart. Annealing the as-prepared amorphous Fe nanostructures under anaerobic conditions affords air-stable carbon-encapsulated Fe(0) and Fe3C nanostructures with retention of the morphology. The resulting nanostructures were thoroughly analyzed by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and Raman spectroscopy. TGA brought out that Fe3C nanostructures are more robust toward oxidation than those of a-Fe. Finally, detailed magnetic studies were carried out by superconducting quantum interference device (SQUID) magnetometer and it was found that the magnetic properties remain conserved even upon exposure of the annealed samples to ambient conditions for months.
Resumo:
Semiconductor nanocrystals (NCs) possess high photoluminescence (PL) typically in the solution phase. In contrary, PL rapidly quenches in the solid state. Efficient solid state luminescence can be achieved by inducing a large Stokes shift. Here we report on a novel synthesis of compositionally controlled CuCdS NCs in air avoiding the usual complexity of using inert atmosphere. These NCs show long-range color tunability over the entire visible range with a remarkable Stokes shift up to about 1.25eV. Overcoating the NCs leads to a high solid-state PL quantum yield (QY) of ca. 55% measured by using an integrating sphere. Unique charge carrier recombination mechanisms have been recognized from the NCs, which are correlated to the internal NC structure probed by using extended X-ray absorption fine structure (EXAFS) spectroscopy. EXAFS measurements show a Cu-rich surface and Cd-rich interior with 46% Cu-I being randomly distributed within 84% of the NC volume creating additional transition states for PL. Color-tunable solid-state luminescence remains stable in air enabling fabrication of light-emitting diodes (LEDs).
Resumo:
Buffer leakage is an important parasitic loss mechanism in AlGaN/GaN high electron mobility transistors (HEMTs) and hence various methods are employed to grow semi-insulating buffer layers. Quantification of carrier concentration in such buffers using conventional capacitance based profiling techniques is challenging due to their fully depleted nature even at zero bias voltages. We provide a simple and effective model to extract carrier concentrations in fully depleted GaN films using capacitance-voltage (C-V) measurements. Extensive mercury probe C-V profiling has been performed on GaN films of differing thicknesses and doping levels in order to validate this model. Carrier concentrations as extracted from both the conventional C-V technique for partially depleted films having the same doping concentration, and Hall measurements show excellent agreement with those predicted by the proposed model thus establishing the utility of this technique. This model can be readily extended to estimate background carrier concentrations from the depletion region capacitances of HEMT structures and fully depleted films of any class of semiconductor materials.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
Extensive measurements of aerosol radiative and microphysical properties were made at an island location, Minicoy (8.3 degrees N, 73.04 degrees E) in the southern Arabian Sea. A large variability in aerosol characteristics associated with changes in air mass and precipitation characteristics was observed. Six distinct transport pathways were identified on the basis of cluster analysis. The Indo-Gangetic Plain, along with the northern Arabian Sea and west Asia (NWA), was identified to be the region having the highest potential for aerosol mass loading at the island. This estimate is based on the concentration weighted trajectory as well as cluster analysis. Dust transport from the NWA region was found to make a substantial contribution to the supermicron mass fraction. The black carbon mass mixing ratios observed were the lowest compared to previous measurements over this region. Consequently, the atmospheric radiative forcing efficiency was low and was in the range 10-28 W m(-2).
Resumo:
The results of the present investigation reveal that the presence of anions in the reacting medium greatly modify the reactions between soil and solution P. Associating anions reduce considerably the retention of phosphate in soils. Citrate, tartrate, and silicate are found to be superior to arsenate, oxalate, and fluoride in reducing phosphate retention in soil. The performance of associating anions depends on the pH and P concentration of the reacting medium. The nature and properties of soil also play a highly significant role on the effectiveness of associating anions.
Resumo:
Uniform field steady-state ionization currents were measured in dry air as a function of N at constant E/N (E is the electric field strength and N the gas number density) and constant electrode separation d for 14·13 × 10-16 less-than-or-eq, slant E/N less-than-or-eq, slant 282·5 × 10-16 V cm2. Uniform field sparking potentials were also measured for Nd range 1·24 × 1016 less-than-or-eq, slant Nd less-than-or-eq, slant 245 × 1016 cm-2. The ratio of the Townsend primary ionization coefficient α to N, α/N, was found to depend on E/N only. The secondary coefficients were also evaluated for aluminium and gold-plated electrodes for the above range of E/N. Measurements of the sparking potentials showed that Paschen's law is not obeyed in air at values of Nd near and below the Paschen minimum.
Resumo:
We find that at a mole fraction 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, a linear hydrocarbon chain of intermediate length (n = 30-40) adopts the most stable collapsed conformation. In pure water, the same chain exhibits an intermittent oscillation between the collapsed and the extended coiled conformations. Even when the mole fraction of DMSO in the bulk is 0.05, the concentration of the same in the first hydration layer around the hydrocarbon of chain length 30 (n = 30) is as large as 17%. Formation of such hydrophobic environment around the hydrocarbon chain may be viewed as the reason for the collapsed conformation gaining additional stability. We find a second anomalous behavior to emerge near x(DMSO) = 0.15, due to a chain-like aggregation of the methyl groups of DMSO in water that lowers the relative concentration of the DMSO molecules in the hydration layer. We further find that as the concentration of DMSO is gradually increased, it progressively attains the extended coiled structure as the stable conformation. Although Flory-Huggins theory (for binary mixture solvent) fails to predict the anomaly at x(DMSO) = 0.05, it seems to capture the essence of the anomaly at 0.15.
Resumo:
Binary mixtures have strong influence on activities of polymers and biopolymers even at low cosolvent concentration. Among the several aqueous binary mixtures studied, water-DMSO especially stands out for its unusual behavior at certain specific concentrations of DMSO. In the present work, we study the effect of water-DMSO binary mixture on polymers and biopolymers by taking a simple linear hydrocarbon chain of intermediate length (n = 30) and the protein lysozyme, respectively. We find that at a mole fraction of 0.05 of DMSO (x(DMSO) = 0.05) in aqueous solution, the hydrocarbon chain adopts the collapsed conformation as the most stable and rigid state. In this case of 0.05 mole fraction of DMSO in bulk, the DMSO concentration in the first hydration layer around the polymer is found to be as large as 17%. Formation of such hydrophobic environment around the polymer is the reason for the collapsed state gaining so much stability. Interestingly, similar quench of conformational fluctuation is also observed for the protein investigated. It is observed that in the case of alkane polymer chains, long wavelength fluctuation gets easily quenched, the polymer being purely hydrophobic. However, in case of the protein, quench of fluctuation is prominent only at the hydrophobic surface, and quench of long wavelength fluctuation becomes insignificant for the full protein. As protein contains both hydrophobic and hydrophilic moieties, the extent of quench of conformational fluctuation with respect to that in pure water is almost half for the biopolymer complex (16.83%) than the same for pure hydrophobic polymer chain (32.43%).
Resumo:
In the present work, we report spectroscopic studies of laser-induced plasmas produced by focusing the second harmonic (532nm) of a Nd:YAG laser onto the laminar flow of a liquid containing chromium. The plasma temperature is determined from the coupled Saha-Boltzmann plot and the electron density is evaluated from the Stark broadening of an ionic line of chromium Cr(II)] at 267.7nm. Our results reveal a decrease in plasma temperature with an increase in Cr concentration up to a certain concentration level; after that, it becomes approximately constant, while the electron density increases with an increase in analyte (Cr) concentration in liquid matrix.
Resumo:
Responses of redox regulatory system to long-term survival (> 18 h) of the catfish Heteropneustes fossilis in air are not yet understood. Lipid and protein oxidation level, oxidant (H2O2) generation, antioxidative status (levels of superoxide dismutase, catalase, glutathione peroxidase and reductase, ascorbic acid and non-protein sulfhydryl) and activities of respiratory complexes (I, II, III and IV) in mitochondria were investigated in muscle of H. fossilis under air exposure condition (0, 3, 6, 12 and 18 h at 25 A degrees C). The increased levels of both H2O2 and tissue oxidation were observed due to the decreased activities of antioxidant enzymes in muscle under water deprivation condition. However, ascorbic acid and non-protein thiol groups were the highest at 18 h air exposure time. A linear increase in complex II activity with air exposure time and an increase up to 12 h followed by a decrease in activity of complex I at 18 h were observed. Negative correlation was observed for complex III and V activity with exposure time. Critical time to modulate the above parameters was found to be 3 h air exposure. Dehydration induced oxidative stress due to modulation of electron transport chain and redox metabolizing enzymes in muscle of H. fossilis was clearly observed. Possible contribution of redox regulatory system in muscle tissue of the fish for long-term survival in air is elucidated. Results of the present study may be useful to understand the redox metabolism in muscle of fishes those are exposed to air in general and air breathing fishes in particular.
Resumo:
This paper presents the experience of the new design of using impinging jet spray columns for scrubbing hydrogen sulfide from biogas that has been developed by Indian Institute of Science and patented. The process uses a chelated polyvalent metal ion which oxidizes the hydrogen sulfide to sulfur as a precipitate. The sulfur generated is filtered and the scrubbing liquid recycled after oxidation. The process involves in bringing contact the sour gas with chelated liquid in the spray columns where H2S reacts with chelated Fe3+ and precipitates as sulfur, whereas Fe3+ gets reduced to Fe2+. Fe2+ is regenerated to Fe3+ by reaction of oxygen in air in a separate packed column. The regenerated liquid is recirculated. Sulfur is filtered and separated as a byproduct. The paper presents the experience in using the spray towers for hydrogen sulfide removal and further use of the clean gas for generating power using gas engines. The maximum allowable limit of H2S for the gas engine is 200 ppm (v/v) in order to prevent any corrosion of engine parts and fouling of the lubricating oil. With the current ISET process, the hydrogen sulfide from the biogas is cleaned to less than 100 ppm (v/v) and the sweet gas is used for power generation. The system is designed for 550 NM3/hr of biogas and inlet H2S concentration of 2.5 %. The inlet concentration of the H2S is about 1 - 1.5 % and average measured outlet concentration is about 30 ppm, with an average gas flow of about 300 - 350 NM3/hr, which is the current gas production rate. The sweet gas is used for power generation in a 1.2 MWe V 12 engine. The average power generation is about 650 - 750 kWe, which is the captive load of the industry. The plant is a CHP (combined heat power) unit with heat from the cylinder cooling and flue being recovered for hot water and steam generation respectively. The specific fuel consumption is 2.29 kWh/m(3) of gas. The system has been in operation for more than 13,000 hours in last one year in the industry. About 8.4 million units of electricity has been generated scrubbing about 2.1 million m3 of gas. Performance of the scrubber and the engine is discussed at daily performance level and also the overall performance with an environment sustenance by precipitating over 27 tons of sulfur.
Resumo:
The current work reports quantitative OH species concentration in the cavity of a trapped vortex combustor (TVC) in the context of mixing and flame stabilization studies using both syngas and methane fuels. Planar laser induced fluorescence (PLIF) measurements of OH radical obtained using a Nd: YAG pumped dye laser are quantified using a flat flame McKenna burner. The momentum flux ratio (MFR), defined as the ratio of the cavity fuel jet momentum to that of the guide vane air stream, is observed to be a key governing parameter. At high MFRs similar to 4.5, the flame front is observed to form at the interface of the fuel jet and the air jet stream. This is substantiated by velocity vector field measurements. For syngas, as the MFR is lowered to similar to 0.3, the fuel-air mixing increases and a flame front is formed at the bottom and downstream edge of the cavity where a stratified charge is present. This trend is observed for different velocities at similar equivalence ratios. In case of methane combustion in the cavity, where the MFRs employed are extremely low at similar to 0.01, a different mechanism is observed. A fuel-rich mixture is now observed at the center of the cavity and this mixture undergoes combustion. On further increase of the cavity equivalence ratio, the rich mixture exceeds the flammability limit and forms a thin reaction zone at the interface with air stream. As a consequence, a shear layer flame at the top of the cavity interface with the mainstream is also observed. The equivalence ratio in the cavity also determines the combustion characteristics in the case of fuel-air mixtures that are formed as a result of the mixing. Overall, flame stabilization mechanisms have been proposed, which account for the wide range of MFRs and premixing in the mainstream as well.