105 resultados para Synthetic vesicles
Resumo:
ABSTRACT: Infrared studies of synthetic alamethicin fragments and model peptides containing a-aminoisobutyric acid (Aib) have been carried out in solution. Tripeptides and larger fragments exhibit a strong tendency to form /3 turns, stabilized by 4 - 1 10-atom hydrogen bonds. Dipeptides show less well-defined structures, though C5 and C7 conformations are detectable. Conformational restrictions imposed by Aib residues result in these peptides populating a limited range of states. Integrated intensities of the hydrogen-bonded N-H stretching band can be used to quantitate the number of intramolecular hydrogen bonds. Predictions made from infrared data are in excellent agreement with nuclear magnetic resonance and X-ray diffraction studies. Assignments of the urethane and tertiary amide carbonyl groups in the free state have been made in model peptides. Shifts to lower frequency on hydrogen bonding are observed for the carbonyl groups. The 1-6 segment of alamethicin is shown to adopt a 310 helical structure stabilized by four intramolecular hydrogen bonds. The fragments Boc-Leu-Aib-Pro-Val-Aib-OMe (1 2-1 6) and Boc-Gly-Leu-Aib-Pro-Val-Aib-OMe (1 1-1 6) possess structures involving 4 - 1 and 5 - 1 hydrogen bonds. Supporting evidence for these structures is obtained from proton nuclear magnetic resonance studies.
Resumo:
LiNi1/3Mn1/3Co1/3O2, a high voltage and high-capacity cathode material for Li-ion batteries, has been synthesized by three different rapid synthetic methods. viz. nitrate-melt decomposition, combustion and sol-gel methods. The first two methods are ultra rapid and a time period as small as 15 min is sufficient to prepare nano-crystalline LiNi1/3Mn1/3Co1/3O2. The processing parameters in obtaining the best performing materials are optimized for each process and their electrochemical performance is evaluated in Li-ion cells. The combustion-derived LiNi1/3Mn1/3Co1/3O2 sample exhibits large extent of cation mixing (10%) while the other two methods yield LiNi1/3Mn1/3Co1/3O2 with cation mixing <5%. LiNi1/3Mn1/3Co1/3O2 prepared by nitrate-melt decomposition method exhibits superior performance as Li-ion battery cathode material.
Resumo:
MUCH information has been gathered in recent years on the so-called 'antifreeze' proteins which lower the freezing point of the serum of certain marine fishes living in sub-zero water temperatures1−4. The proteins from the Antarctic fish Trematomus borchgrevinki are glycoproteins with a repeating alanyl-alanyl-threonyl tripeptide sequence, the threonyl residue being linked to a disaccharide1,2. In contrast, the antifreeze protein from the winter flounder Pseudopleuronectus americanus in the North American Atlantic coastal region is made up of eight ammo acids with no apparent repeating sequence of the residues and no sugar moiety (ref. 4 and unpublished work of C. L. Hew, C. C. Yip & G. Fletcher). The antifreeze activity of these proteins is not compatible with the known colligative properties of solutes in solution and the mechanism of their action is not yet fully understood. But a common feature of both types of the antifreeze proteins is the preponderance of alanine which accounts for over 60% of the total amino residues. This fact, together with the absence of the carbohydrate in the protein from the winter flounder, prompted us to attempt the synthesis of polypeptide analogues having comparable proportions of alanine in them along with suitable other amino acids. As a first step, we made use of the lack of any obvious periodicity in the distribution of the alanyl residues in the flounder's protein and attempted the synthesis of a random copolypeptide containing about 65 mol % of alanine and 35 mol % of aspartic acid. The choice of aspartic acid was made on the basis of its being the next major amino acid in the flounder's protein3,4 and on the expectation that its polar character will help the water-solubility of the alanine-rich copolypeptide, as in other studies on alanine-containing random copolymers. In addition, Duman and DeVries4 have earlier indicated the involvement of carboxyl groups on the antifreeze activity by chemical modification studies. We report here the synthesis of this polypeptide and show that it possesses antifreeze activity.
Resumo:
One of the monoclonal antibodies raised against bovine beta-lactoglobulin reacted with human serum retinol binding protein. The finding that this monoclonal antibody also reacted with the serum retinol binding proteins isolated from other animals, suggested that this epitopic conformation is conserved among these proteins. Using ELISA and various synthetic peptides of defined sequence, we show in this paper that the epitope defined by this monoclonal antibody comprises of the highly conserved core sequence of DTDY present in beta-lactoglobulin and retinol binding proteins.
Resumo:
Arabinomannan-containing glycolipids, relevant to the mycobacterial cell-wall component lipoarabinomannan, were synthesized by chemical methods. The glycolipids were presented with tri- and tetrasaccharide arabinomannans as the sugar portion and a double alkyl chain as the lyophilic portion. Following synthesis, systematic biological and biophysical studies were undertaken in order to identify the effects of the glycolipids during mycobacterium growth. The studies included mycobacterial growth, biofilm formation and motility assays. From the studies, it was observed that the synthetic glycolipid with higher arabinan residues inhibited the mycobacterial growth, lessened the biofilm formation and impaired the motility of mycobacteria. A surface plasmon resonance study involving the immobilized glycan surface and the mycobacterial crude lysates as analytes showed specificities of the interactions. Further, it was found that cell lysates from motile bacteria bound oligosaccharide with higher affinity than non-motile bacteria.
Resumo:
The stepwise synthesis of amino terminal pentapeptide of alamethicin, Z-Aib-Pro-Aib-Ala-Aib-OMe, by the dicyclohexylcarbodiimide mediated couplings leads to extensive racemization at the Ala and Pro residues. Racemization is largely suppressed by the use of additives like N-hydroxysuccinimide and 1-hydroxybenzotriazole. The presence of diastereomeric peptides may be detected by the observation of additional methyl ester and benzylic methylene signals in the 270 MHz 1H NMR spectra. Unambiguous spectral assignment of the signals to the diastereomers has been carried out by the synthesis and NMR studies of the D-Ala tetra and pentapeptides. The racemization at Pro is of particular relevance in view of the reported lack of inversion at C-terminal Pro on carboxyl activation.
Resumo:
The importance of selenium as an essential trace element is now well recognized. In proteins, the redox-active selenium moiety is incorporated as selenocysteine (Sec), the 21st amino acid. In mammals, selenium exerts its redox activities through several selenocysteine-containing enzymes, which include glutathione peroxidase (GPx), iodothyronine deiodinase (ID), and thioredoxin reductase (TrxR). Although these enzymes have Sec in their active sites, they catalyze completely different reactions and their substrate specificity and cofactor or co-substrate systems are significantly different. The antioxidant enzyme GPx uses the tripeptide glutathione (GSH) for the catalytic reduction of hydrogen peroxide and organic peroxides, whereas the larger and more advanced mammalian TrxRs have cysteine moieties in different subunits and prefer to utilize these internal cysteines as thiol cofactors for their catalytic activity. On the other hand, the nature of in vivo cofactor for the deiodinating enzyme ID is not known, although the use of thiols as reducing agents has been well-documented. Recent studies suggest that molecular recognition and effective binding of the thiol cofactors at the active site of the selenoenzymes and their mimics play crucial roles in the catalytic activity. The aim of this perspective is to present an overview of the thiol cofactor systems used by different selenoenzymes and their mimics.
Resumo:
Two acceptor containing polyimides PDI and NDI carrying pyromellitic diimide units and 1,4,5,8-naphthalene tetracarboxy diimide units, respectively, along with hexa(oxyethylene) (EO6) segments as linkers, were prepared from the corresponding dianhydrides and diamines. These polyimides were made to fold by interaction with specifically designed folding agents containing a dialkoxynaphtha-lene (DAN) donor linked to a carboxylic acid group. The alkali-metal counter-ion of the donor carboxylic acid upon complexation with the EO6 segment brings the DAN unit in the right location to induce a charge-transfer complex formation with acceptor units in the polymer backbone. This two-point interaction between the folding agent and the polymer backbone leads to a folding of the polymer chain, which was readily monitored by NMR titrations. The effect of various parameters, such as structures of the folding agent and polymer, and the solvent composition, on the folding propensities of the polymer was studied.
Resumo:
Three model dipeptides containing a dehydroalanine residue (Ala) at the C-terminal, Boc-X-Ala-NHCH3 [X = Ala, Val, and Phe,] have been synthesized and their solution conformations investigated by 1H-NMR, IR, and CD spectroscopy. NMR studies on these peptides in CDCl3 clearly indicate that the NH group of dehydroalanine is involved in an intramolecular hydrogen bond. This conclusion is supported by IR studies also. Nuclear Overhauser effect (NOE) studies are also accommodative of an inverse -turn-type of conformation that is characterised by conformational angles of -70° and +70° around the X residue, and a C[stack i+1 ]H-Ni+2H interproton distance of 2.5 Å. It appears that unlike dehydrophenylalanine or dehydroleucine, which tend to stabilize -turn type of structures occupying the i + 2 position of the turn, dehydroalanine favors the formation of an inverse -turn, centered at the proceeding L-residue in such solvents as CDCl3 and (CD3)2SO. A comparison of solution conformation of Boc Val-Ala-NHCH3 with the corresponding saturated analogue, Boc-Val-Ala-NHCH3, is also presented and shows that dehydroalanine is responsible for inducing the turn structure. It may be possible to design peptides with different preferred conformations using the suitable dehydroamino acid.
Resumo:
Two IS- and 16-residue peptides containing a-aminoisobutyric acid (Aib) have been synthesized, as part of a strategy to construct stereochemically rigid peptide helices, in a modular approach to design of protein mimics. The peptides Boc-(Val-Ala-Leu-Aib),-OMe ( I ) and Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-(Val-Ala-Leu-Aib()11z)- OhaMvee been crystallized.Both crystals are stable only in the presence of mother liquor or water. The crystal data are as follows. I: C78H140N16019~2H20,P2,, a = 16.391 (3) A, b = 16.860 (3) A, c = 18.428 (3) A, p = 103.02 (I)O, Z = 2, R = 9.6% for 3445 data with lFol >30(F), resolution 0.93 A. 11: C7,Hl,,N,S018.7.5H,0, C2221, a = 18.348 ( 5 ) A, b = 47.382 (1 1) A, c = 24.157 ( 5 ) A, Z =8, R = l0,6%, for 3147 data with lFol > 3a(F), resolution 1.00 A. The 15-residue peptide (11) is entirely a helical, while the 16-residue peptide ( I ) has a short segment of 310 helix at the N terminus. The packing of the helices in the crystals is rather incfficicnt with no particular attractions between Leu-Leu side chains, or any other pair. Both crystals have fairly large voids, which are filled with water molecules in a disordered fashion. Water molecule sites near the polar head-to-tail regions are well detcrmined, those closer to the hydrophobic side chains less so and a number of possible water sites in the remaining "empty" space are not determined. No interdigitation of Leu side chains is observed in the crystal as is hypothesized in the "leucine zipper" class of DNA binding proteins.
Resumo:
Two seven-residue helical segments, Val-Ala-Leu-Aib-Val-Ala-Leu, were linked synthetically with an epsilon-aminocaproic acid (Acp) linker with the intention of making a stable antiparallel helix-helix motif. The crystal structure of the linked peptide Boc-Val-Ala-Leu-Aib-Val-Ala-Leu-Acp-Val-Ala-Leu-Aib-Val-Ala-Leu-OMe (1) shows the two helices displaced laterally from each other by the linker, but the linker has not folded the molecule into a close-packed antiparallel conformation. Two strong intermolecular NH...O = C hydrogen bonds are formed between the top of the lower helix of one molecule and the bottom of the upper helix in a laterally adjacent molecule to give the appearance of an extended single helix. The composite peptide with Boc and OMe end groups, C76H137N15O18.H2O, crystallize in space group P2(1) with a = 8.802 (1) angstrom, b = 20.409 (4) angstrom, c = 26.315 (3) angstrom, and beta = 90.72 (1)degrees; overall agreement R = 7.86% for 5030 observed reflections (\F(o)\ > 3-sigma(F)); resolution = 0.93 angstrom. Limited evidence for a more compact conformation in solution consistent with an antiparallel helix arrangement is obtained by comparison of the HPLC retention times and CD spectra of peptide 1 with well-characterized continuous helices of similar length and sequence.
Resumo:
Two series of peptides, designated K and NK were synthesized and tested for lipid A binding and neutralizing properties. K-2, which has an 11-residue amphiphilic core, and a branched N-terminus bearing two branched lysinyl residues does not bind lipid A, while NK2, also with an 11-residue amphiphilic core comprised entirely of non-ionizable residues, and a similarly branched, cationic N-terminus, binds lipid A very weakly. Both peptides do not inhibit lipopolysaccharide (LPS) activity in the Limulus assay, nor do they inhibit LPS-induced TNF-alpha and NO production in 5774 cells. These results are entirely unlike a homologous peptide with an exclusively hydrophobic core whose LPS-binding and neutralizing properties are very similar to that of polymyxin B [David SA, Awasthi SK, Wiese A et al. Characterization of the interactions of a polycationic, amphiphilic, terminally branched oligopeptide with lipid A and lipopolysaccharide from the deep rough mutant of Salmonella minnesota. J Endotoxin Res 1996; 3: 369-379]. These data suggest that a clear segregation of charged and apolar domains is crucial in molecules designed for purposes of LPS sequestration and that head-tail (polar) orientation of the cationic/hydrophobic regions is preferable to molecules with mixed or facial cationic/amphipathic character.
Resumo:
By a series of reactions the Diels-Alder adduct IV of maleic anhydride and β-trans-Ocimene gave 1-hydroxy-1,4-dimethyl-7-hydroxymethyloctahydroindane (XII). Its further synthetic elaboration furnished 1,4-dimethyl-7-(2-ethoxycarbonyl-1-propenyl)-Δ1-octahydroindane of the valerenic acid skeleton.
Resumo:
The total synthesis of 8-isotestosterone (II) and the corresponding anthracene analogue (III) following the benzohydrindane route is reported. Catalytic hydrogenation of trans-1β-acetoxy-8-methyl-4,5-(3′-methyl-4′-hydroxybenzo)-hydrindane (V) followed by oxidation has furnished two isomeric tricyclic keto acetates, viz. 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aα,-5α,6,7,8,8aα-decahydronaphthalene (VII) and 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aβ,5,6,7,8,8aβ-decahydronaphthalene (IX) which are cis-non-steroid and cis-steroid configurations of the same cyclopentano-cis-decalins. A difference in the direction of enolization of the keto acetate (VII) in alkylation reaction and enol acetylation towards the methine and the methylene carbon atoms respectively has been observed.