144 resultados para Synchronization algorithms
Resumo:
An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.
Resumo:
An algorithm is described for developing a hierarchy among a set of elements having certain precedence relations. This algorithm, which is based on tracing a path through the graph, is easily implemented by a computer.
Resumo:
Algorithms are described for the basic arithmetic operations and square rooting in a negative base. A new operation called polarization that reverses the sign of a number facilitates subtraction, using addition. Some special features of the negative-base arithmetic are also mentioned.
Resumo:
The Printed Circuit Board (PCB) layout design is one of the most important and time consuming phases during equipment design process in all electronic industries. This paper is concerned with the development and implementation of a computer aided PCB design package. A set of programs which operate on a description of the circuit supplied by the user in the form of a data file and subsequently design the layout of a double-sided PCB has been developed. The algorithms used for the design of the PCB optimise the board area and the length of copper tracks used for the interconnections. The output of the package is the layout drawing of the PCB, drawn on a CALCOMP hard copy plotter and a Tektronix 4012 storage graphics display terminal. The routing density (the board area required for one component) achieved by this package is typically 0.8 sq. inch per IC. The package is implemented on a DEC 1090 system in Pascal and FORTRAN and SIGN(1) graphics package is used for display generation.
Resumo:
An important question which has to be answered in evaluting the suitability of a microcomputer for a control application is the time it would take to execute the specified control algorithm. In this paper, we present a method of obtaining closed-form formulas to estimate this time. These formulas are applicable to control algorithms in which arithmetic operations and matrix manipulations dominate. The method does not require writing detailed programs for implementing the control algorithm. Using this method, the execution times of a variety of control algorithms on a range of 16-bit mini- and recently announced microcomputers are calculated. The formulas have been verified independently by an analysis program, which computes the execution time bounds of control algorithms coded in Pascal when they are run on a specified micro- or minicomputer.
Resumo:
In [8], we recently presented two computationally efficient algorithms named B-RED and P-RED for random early detection. In this letter, we present the mathematical proof of convergence of these algorithms under general conditions to local minima.
Resumo:
We present four new reinforcement learning algorithms based on actor-critic, natural-gradient and functi approximation ideas,and we provide their convergence proofs. Actor-critic reinforcement learning methods are online approximations to policy iteration in which the value-function parameters are estimated using temporal difference learning and the policy parameters are updated by stochastic gradient descent. Methods based on policy gradients in this way are of special interest because of their compatibility with function-approximation methods, which are needed to handle large or infinite state spaces. The use of temporal difference learning in this way is of special interest because in many applications it dramatically reduces the variance of the gradient estimates. The use of the natural gradient is of interest because it can produce better conditioned parameterizations and has been shown to further reduce variance in some cases. Our results extend prior two-timescale convergence results for actor-critic methods by Konda and Tsitsiklis by using temporal difference learning in the actor and by incorporating natural gradients. Our results extend prior empirical studies of natural actor-critic methods by Peters, Vijayakumar and Schaal by providing the first convergence proofs and the first fully incremental algorithms.
Resumo:
This article analyzes the effect of devising a new failure envelope by the combination of the most commonly used failure criteria for the composite laminates, on the design of composite structures. The failure criteria considered for the study are maximum stress and Tsai-Wu criteria. In addition to these popular phenomenological-based failure criteria, a micromechanics-based failure criterion called failure mechanism-based failure criterion is also considered. The failure envelopes obtained by these failure criteria are superimposed over one another and a new failure envelope is constructed based on the lowest absolute values of the strengths predicted by these failure criteria. Thus, the new failure envelope so obtained is named as most conservative failure envelope. A minimum weight design of composite laminates is performed using genetic algorithms. In addition to this, the effect of stacking sequence on the minimum weight of the laminate is also studied. Results are compared for the different failure envelopes and the conservative design is evaluated, with respect to the designs obtained by using only one failure criteria. The design approach is recommended for structures where composites are the key load-carrying members such as helicopter rotor blades.
Resumo:
A considerable amount of work has been dedicated on the development of analytical solutions for flow of chemical contaminants through soils. Most of the analytical solutions for complex transport problems are closed-form series solutions. The convergence of these solutions depends on the eigen values obtained from a corresponding transcendental equation. Thus, the difficulty in obtaining exact solutions from analytical models encourages the use of numerical solutions for the parameter estimation even though, the later models are computationally expensive. In this paper a combination of two swarm intelligence based algorithms are used for accurate estimation of design transport parameters from the closed-form analytical solutions. Estimation of eigen values from a transcendental equation is treated as a multimodal discontinuous function optimization problem. The eigen values are estimated using an algorithm derived based on glowworm swarm strategy. Parameter estimation of the inverse problem is handled using standard PSO algorithm. Integration of these two algorithms enables an accurate estimation of design parameters using closed-form analytical solutions. The present solver is applied to a real world inverse problem in environmental engineering. The inverse model based on swarm intelligence techniques is validated and the accuracy in parameter estimation is shown. The proposed solver quickly estimates the design parameters with a great precision.
Resumo:
A common trick for designing faster quantum adiabatic algorithms is to apply the adiabaticity condition locally at every instant. However it is often difficult to determine the instantaneous gap between the lowest two eigenvalues, which is an essential ingredient in the adiabaticity condition. In this paper we present a simple linear algebraic technique for obtaining a lower bound on the instantaneous gap even in such a situation. As an illustration, we investigate the adiabatic un-ordered search of van Dam et al. [17] and Roland and Cerf [15] when the non-zero entries of the diagonal final Hamiltonian are perturbed by a polynomial (in log N, where N is the length of the unordered list) amount. We use our technique to derive a bound on the running time of a local adiabatic schedule in terms of the minimum gap between the lowest two eigenvalues.
Resumo:
We consider the problem of determining if two finite groups are isomorphic. The groups are assumed to be represented by their multiplication tables. We present an O(n) algorithm that determines if two Abelian groups with n elements each are isomorphic. This improves upon the previous upper bound of O(n log n) [Narayan Vikas, An O(n) algorithm for Abelian p-group isomorphism and an O(n log n) algorithm for Abelian group isomorphism, J. Comput. System Sci. 53 (1996) 1-9] known for this problem. We solve a more general problem of computing the orders of all the elements of any group (not necessarily Abelian) of size n in O(n) time. Our algorithm for isomorphism testing of Abelian groups follows from this result. We use the property that our order finding algorithm works for any group to design a simple O(n) algorithm for testing whether a group of size n, described by its multiplication table, is nilpotent. We also give an O(n) algorithm for determining if a group of size n, described by its multiplication table, is Abelian. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
We propose certain discrete parameter variants of well known simulation optimization algorithms. Two of these algorithms are based on the smoothed functional (SF) technique while two others are based on the simultaneous perturbation stochastic approximation (SPSA) method. They differ from each other in the way perturbations are obtained and also the manner in which projections and parameter updates are performed. All our algorithms use two simulations and two-timescale stochastic approximation. As an application setting, we consider the important problem of admission control of packets in communication networks under dependent service times. We consider a discrete time slotted queueing model of the system and consider two different scenarios - one where the service times have a dependence on the system state and the other where they depend on the number of arrivals in a time slot. Under our settings, the simulated objective function appears ill-behaved with multiple local minima and a unique global minimum characterized by a sharp dip in the objective function in a small region of the parameter space. We compare the performance of our algorithms on these settings and observe that the two SF algorithms show the best results overall. In fact, in many cases studied, SF algorithms converge to the global minimum.
Resumo:
Four hybrid algorithms has been developed for the solution of the unit commitment problem. They use simulated annealing as one of the constituent techniques, and produce lower cost schedules; two of them have less overhead than other soft computing techniques. They are also more robust to the choice of parameters. A special technique avoids the generating of infeasible schedules, and thus reduces computation time.
Resumo:
We propose two algorithms for Q-learning that use the two-timescale stochastic approximation methodology. The first of these updates Q-values of all feasible state–action pairs at each instant while the second updates Q-values of states with actions chosen according to the ‘current’ randomized policy updates. A proof of convergence of the algorithms is shown. Finally, numerical experiments using the proposed algorithms on an application of routing in communication networks are presented on a few different settings.
Resumo:
Next generation wireless systems employ Orthogonal frequency division multiplexing (OFDM) physical layer owing to the high data rate transmissions that are possible without increase in bandwidth. While TCP performance has been extensively studied for interaction with link layer ARQ, little attention has been given to the interaction of TCP with MAC layer. In this work, we explore cross-layer interactions in an OFDM based wireless system, specifically focusing on channel-aware resource allocation strategies at the MAC layer and its impact on TCP congestion control. Both efficiency and fairness oriented MAC resource allocation strategies were designed for evaluating the performance of TCP. The former schemes try to exploit the channel diversity to maximize the system throughput, while the latter schemes try to provide a fair resource allocation over sufficiently long time duration. From a TCP goodput standpoint, we show that the class of MAC algorithms that incorporate a fairness metric and consider the backlog outperform the channel diversity exploiting schemes.