35 resultados para Supervised training


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Owing to the increased customer demands for make-to-order products and smaller product life-cycles, today assembly lines are designed to ensure a quick switch-over from one product model to another for companies' survival in market place. The complexity associated with the decisions pertaining to the type of training and number of workers and their exposition to the different tasks especially in the current era of customized production is a serious problem that the managers and the HRD gurus are facing in industry. This paper aims to determine the amount of cross-training and dynamic deployment policy caused by workforce flexibility for a make-to-order assembly. The aforementioned issues have been dealt with by adopting the concept of evolutionary fuzzy system because of the linguistic nature of the attributes associated with product variety and task complexity. A fuzzy system-based methodology is proposed to determine the amount of cross-training and dynamic deployment policy. The proposed methodology is tested on 10 sample products of varying complexities and the results obtained are in line with the conclusions drawn by previous researchers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Receive antenna selection (AS) provides many benefits of multiple-antenna systems at drastically reduced hardware costs. In it, the receiver connects a dynamically selected subset of N available antennas to the L available RF chains. Due to the nature of AS, the channel estimates at different antennas, which are required to determine the best subset for data reception, are obtained from different transmissions of the pilot sequence. Consequently, they are outdated by different amounts in a time-varying channel. We show that a linear weighting of the estimates is necessary and optimum for the subset selection process, where the weights are related to the temporal correlation of the channel variations. When L is not an integer divisor of N , we highlight a new issue of ``training voids'', in which the last pilot transmission is not fully exploited by the receiver. We then present new ``void-filling'' methods that exploit these voids and greatly improve the performance of AS. The optimal subset selection rules with void-filling, in which different antennas turn out to have different numbers of estimates, are also explicitly characterized. Closed-form equations for the symbol error probability with and without void-filling are also developed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Due to its wide applicability, semi-supervised learning is an attractive method for using unlabeled data in classification. In this work, we present a semi-supervised support vector classifier that is designed using quasi-Newton method for nonsmooth convex functions. The proposed algorithm is suitable in dealing with very large number of examples and features. Numerical experiments on various benchmark datasets showed that the proposed algorithm is fast and gives improved generalization performance over the existing methods. Further, a non-linear semi-supervised SVM has been proposed based on a multiple label switching scheme. This non-linear semi-supervised SVM is found to converge faster and it is found to improve generalization performance on several benchmark datasets. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article explores issues and challenges in the field of education in nanoscience and technology with special emphasis with respect to India, where an expanding programme of research in nano science and technology is in place. The article does not concentrate on actual curricula that are needed in nano science and technology education course. Rather it focuses on the desirability of nanoscience and technology education at different levels of education and future prospect of students venturing into this within the economic and cultural milieu of India. We argue that care is needed in developing the education programme in India. However, the risk is worth taking as the education on nanoscience and technology can bridge the man power gap not only in this area of technology but also related technologies of hardware and micro electronics for which the country is a promising destination at global level. This will also unlock the demographical advantage that India will enjoy in the next five decades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While wireless LAN (WLAN) is very popular now a days, its performance deteriorates in the presence of other signals like Bluetooth (BT) signal that operate in the same band as WLAN. Present interference mitigation techniques in WLAN due to BT cancel interference in WLAN sub carrier where BT has hopped but do not cancel interference in the adjacent sub carriers. In this paper BT interference signal in all the OFDM sub carriers is estimated. That is, leakage of BT in other sub carriers including the sub carriers in which it has hopped is also measured. BT signals are estimated using the training signals of OFDM system. Simulation results in AWGN noise show that proposed algorithm agrees closely with theoretical results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antenna selection allows multiple-antenna systems to achieve most of their promised diversity gain, while keeping the number of RF chains and, thus, cost/complexity low. In this paper we investigate antenna selection for fourth-generation OFDMA- based cellular communications systems, in particular, 3GPP LTE (long-term evolution) systems. We propose a training method for antenna selection that is especially suitable for OFDMA. By means of simulation, we evaluate the SNR-gain that can be achieved with our design. We find that the performance depends on the bandwidth assigned to each user, the scheduling method (round-robin or frequency-domain scheduling), and the Doppler spread. Furthermore, the signal-to-noise ratio of the training sequence plays a critical role. Typical SNR gains are around 2 dB, with larger values obtainable in certain circumstances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distributed space-time block codes (DSTBCs) from complex orthogonal designs (CODs) (both square and nonsquare), coordinate interleaved orthogonal designs (CIODs), and Clifford unitary weight designs (CUWDs) are known to lose their single-symbol ML decodable (SSD) property when used in two-hop wireless relay networks using amplify and forward protocol. For such networks, in this paper, three new classes of high rate, training-symbol embedded (TSE) SSD DSTBCs are constructed: TSE-CODs, TSE-CIODs, and TSE-CUWDs. The proposed codes include the training symbols inside the structure of the code which is shown to be the key point to obtain the SSD property along with the channel estimation capability. TSE-CODs are shown to offer full-diversity for arbitrary complex constellations and the constellations for which TSE-CIODs and TSE-CUWDs offer full-diversity are characterized. It is shown that DSTBCs from nonsquare TSE-CODs provide better rates (in symbols per channel use) when compared to the known SSD DSTBCs for relay networks. Important from the practical point of view, the proposed DSTBCs do not contain any zeros in their codewords and as a result, antennas of the relay nodes do not undergo a sequence of switch on/off transitions within every codeword, and, thus, avoid the antenna switching problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design and implementation of a learning controller for the Automatic Generation Control (AGC) in power systems based on a reinforcement learning (RL) framework. In contrast to the recent RL scheme for AGC proposed by us, the present method permits handling of power system variables such as Area Control Error (ACE) and deviations from scheduled frequency and tie-line flows as continuous variables. (In the earlier scheme, these variables have to be quantized into finitely many levels). The optimal control law is arrived at in the RL framework by making use of Q-learning strategy. Since the state variables are continuous, we propose the use of Radial Basis Function (RBF) neural networks to compute the Q-values for a given input state. Since, in this application we cannot provide training data appropriate for the standard supervised learning framework, a reinforcement learning algorithm is employed to train the RBF network. We also employ a novel exploration strategy, based on a Learning Automata algorithm,for generating training samples during Q-learning. The proposed scheme, in addition to being simple to implement, inherits all the attractive features of an RL scheme such as model independent design, flexibility in control objective specification, robustness etc. Two implementations of the proposed approach are presented. Through simulation studies the attractiveness of this approach is demonstrated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the development of a neural network based power system stabilizer (PSS) designed to enhance the damping characteristics of a practical power system network representing a part of Electricity Generating Authority of Thailand (EGAT) system. The proposed PSS consists of a neuro-identifier and a neuro-controller which have been developed based on functional link network (FLN) model. A recursive on-line training algorithm has been utilized to train the two neural networks. Simulation results have been obtained under various operating conditions and severe disturbance cases which show that the proposed neuro-PSS can provide a better damping to the local as well as interarea modes of oscillations as compared to a conventional PSS

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on exchange bias effects in 10 nm particles of Pr0.5Ca0.5MnO3 which appear as a result of competing interactions between the ferromagnetic (FM)/anti-ferromagnetic (AFM) phases. The fascinating new observation is the demonstration of the temperature dependence of oscillatory exchange bias (OEB) and is tunable as a function of cooling field strength below the SG phase, may be attributable to the presence of charge/spin density wave (CDW/SDW) in the AFM core of PCMO10. The pronounced training effect is noticed at 5 K from the variation of the EB field as a function of number of field cycles (n) upon the field cooling (FC) process. For n > 1, power-law behavior describes the experimental data well; however, the breakdown of spin configuration model is noticed at n >= 1. Copyright 2012 Author(s). This article is distributed under a Creative Commons Attribution 3.0 Unported License. http://dx.doi.org/10.1063/1.3696033]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this letter, we analyze the Diversity Multiplexinggain Tradeoff (DMT) performance of a training-based reciprocal Single Input Multiple Output (SIMO) system. Assuming Channel State Information (CSI) is available at the Receiver (CSIR), we propose a channel-dependent power-controlled Reverse Channel Training (RCT) scheme that enables the transmitter to directly estimate the power control parameter to be used for the forwardlink data transmission. We show that, with an RCT power of (P) over bar (gamma), gamma > 0 and a forward data transmission power of (P) over bar, our proposed scheme achieves an infinite diversity order for 0 <= g(m) < L-c-L-B,L-tau/L-c min(gamma, 1) and r > 2, where g(m) is the multiplexing gain, L-c is the channel coherence time, L-B,L-tau is the RCT duration and r is the number of receive antennas. We also derive an upper bound on the outage probability and show that it goes to zero asymptotically as exp(-(P) over bar (E)), where E (sic) (gamma - g(m)L(c)/L-c-L-B,L-tau), at high (P) over bar. Thus, the proposed scheme achieves a significantly better DMT performance compared to the finite diversity order achieved by channel-agnostic, fixed-power RCT schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comments constitute an important part of Web 2.0. In this paper, we consider comments on news articles. To simplify the task of relating the comment content to the article content the comments are about, we propose the idea of showing comments alongside article segments and explore automatic mapping of comments to article segments. This task is challenging because of the vocabulary mismatch between the articles and the comments. We present supervised and unsupervised techniques for aligning comments to segments the of article the comments are about. More specifically, we provide a novel formulation of supervised alignment problem using the framework of structured classification. Our experimental results show that structured classification model performs better than unsupervised matching and binary classification model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Training for receive antenna selection (AS) differs from that for conventional multiple antenna systems because of the limited hardware usage inherent in AS. We analyze and optimize the performance of a novel energy-efficient training method tailored for receive AS. In it, the transmitter sends not only pilots that enable the selection process, but also an extra pilot that leads to accurate channel estimates for the selected antenna that actually receives data. For time-varying channels, we propose a novel antenna selection rule and prove that it minimizes the symbol error probability (SEP). We also derive closed-form expressions for the SEP of MPSK, and show that the considered training method is significantly more energy-efficient than the conventional AS training method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fast and efficient channel estimation is key to achieving high data rate performance in mobile and vehicular communication systems, where the channel is fast time-varying. To this end, this work proposes and optimizes channel-dependent training schemes for reciprocal Multiple-Input Multiple-Output (MIMO) channels with beamforming (BF) at the transmitter and receiver. First, assuming that Channel State Information (CSI) is available at the receiver, a channel-dependent Reverse Channel Training (RCT) signal is proposed that enables efficient estimation of the BF vector at the transmitter with a minimum training duration of only one symbol. In contrast, conventional orthogonal training requires a minimum training duration equal to the number of receive antennas. A tight approximation to the capacity lower bound on the system is derived, which is used as a performance metric to optimize the parameters of the RCT. Next, assuming that CSI is available at the transmitter, a channel-dependent forward-link training signal is proposed and its power and duration are optimized with respect to an approximate capacity lower bound. Monte Carlo simulations illustrate the significant performance improvement offered by the proposed channel-dependent training schemes over the existing channel-agnostic orthogonal training schemes.