193 resultados para Supersymmetric formalism
Resumo:
The ground state and low energy excitations of the SU(m|n) supersymmetric Haldane–Shastry spin chain are analyzed. In the thermodynamic limit, it is found that the ground state degeneracy is finite only for the SU(m|0) and SU(m|1) spin chains, while the dispersion relation for the low energy and low momentum excitations is linear for all values of m and n. We show that the low energy excitations of the SU(m|1) spin chain are described by a conformal field theory of m non-interacting Dirac fermions which have only positive energies; the central charge of this theory is m/2. Finally, for ngreater-or-equal, slanted1, the partition functions of the SU(m|n) Haldane–Shastry spin chain and the SU(m|n) Polychronakos spin chain are shown to be related in a simple way in the thermodynamic limit at low temperatures.
Resumo:
Darken's quadratic formalism is extended to multicomponent solutions. Equations are developed for the representation of the integral and partial excess free energies, entropies and enthalpies in dilute multicomponent solutions. Quadratic formalism applied to multicomponent solutions is thermodynamically consistent. The formalism is compared with the conventional second order Maclaurin series or interaction parameter representation and the relations between them are derived. Advantages of the quadratic formalism are discussed.
Resumo:
We obtain the superconformal transformation laws of theN=4 supersymmetric Yang-Mills theory and explicitly demonstrate the closure of the algebra.
Resumo:
The apparent contradiction between the exact nature of the interaction parameter formalism as presented by Lupis and Elliott and the inconsistencies discussed recently by Pelton and Bale arise from the truncation of the Maclaurin series in the latter treatment. The truncation removes the exactness of the expression for the logarithm of the activity coefficient of a solute in a multi-component system. The integrals are therefore path dependent. Formulae for integration along paths of constant Xi,or X i/Xj are presented. The expression for In γsolvent given by Pelton and Bale is valid only in the limit that the mole fraction of solvent tends to one. The truncation also destroys the general relations between interaction parameters derived by Lupis and Elliott. For each specific choice of parameters special relationships are obtained between interaction parameters.
Resumo:
A broad numerical survey of relativistic rotating neutron star structures was compiled using an exhaustive list of presently available equation of state models for neutron star matter. The structure parameters (spherical deformations in mass and radii, the moment of inertia and quadrupole moment, oblateness, and free precession) are calculated using the formalism proposed by Hartle and Thorne (1968). The results are discussed in relation to the relevant observational information. Binary pulsar data and X-ray burst sources provide information on the bulk properties of neutron stars, enabling the derivation of constraints that can be put on the structure of neutron stars and equation of state models.
Resumo:
The Witten index can be defined in many supersymmetric theories by formulating them in the space-time R×S3. If the index is nonzero for any value of the radius of S3, it can be shown that the theory does not break supersymmetry in Minkowski space. This approach rules out supersymmetry breaking in a large class of models, chiral and otherwise. The index arguments are consistent with previous instanton calculations which indicate supersymmetry breaking in certain theories.
Resumo:
Fujikawa's method of evaluating the supercurrent and the superconformal current anomalies, using the heat-kernel regularization scheme, is extended to theories with gauge invariance, in particular, to the off-shell N=1 supersymmetric Yang-Mills (SSYM) theory. The Jacobians of supersymmetry and superconformal transformations are finite. Although the gauge-fixing term is not supersymmetric and the regularization scheme is not manifestly supersymmetric, we find that the regularized Jacobians are gauge invariant and finite and they can be expressed in such a way that there is no one-loop supercurrent anomaly for the N=1 SSYM theory. The superconformal anomaly is nonzero and the anomaly agrees with a similar result obtained using other methods.
Resumo:
Here we rederive the hierarchy of equations for the evolution of distribution functions of various orders using a convenient parameterization. We use this to obtain equations for two- and three-point correlation functions in powers of a small parameter, viz., the initial density contrast. The correspondence of the lowest order solutions of these equations to the results from the linear theory of density perturbations is shown for an OMEGA = 1 universe. These equations are then used to calculate, to the lowest order, the induced three-point correlation function that arises from Gaussian initial conditions in an OMEGA = 1 universe. We obtain an expression which explicitly exhibits the spatial structure of the induced three-point correlation function. It is seen that the spatial structure of this quantity is independent of the value of OMEGA. We also calculate the triplet momentum. We find that the induced three-point correlation function does not have the ''hierarchical'' form often assumed. We discuss possibilities of using the induced three-point correlation to interpret observational data. The formalism developed here can also be used to test a validity of different schemes to close the
Resumo:
Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.
Resumo:
Pyrrolysyl-tRNA synthetase (PyIRS) is an atypical enzyme responsible for charging tRNA(Pyl) with pyrrolysine, despite lacking precise tRNA anticodon recognition. This dimeric protein exhibits allosteric regulation of function, like any other tRNA synthetases. In this study we examine the paths of allosteric communication at the atomic level, through energy-weighted networks of Desulfitobacterium hafniense PyIRS (DhPyIRS) and its complexes with tRNA(Pyl) and activated pyrrolysine. We performed molecular dynamics simulations of the structures of these complexes to obtain an ensemble conformation-population perspective. Weighted graph parameters relevant to identifying key players and ties in the context of social networks such as edge/node betweenness, closeness index, and the concept of funneling are explored in identifying key residues and interactions leading to shortest paths of communication in the structure networks of DhPylRS. Further, the changes in the status of important residues and connections and the costs of communication due to ligand induced perturbations are evaluated. The optimal, suboptimal, and preexisting paths are also investigated. Many of these parameters have exhibited an enhanced asymmetry between the two subunits of the dimeric protein, especially in the pretransfer complex, leading us to conclude that encoding of function goes beyond the sequence/structure of proteins. The local and global perturbations mediated by appropriate ligands and their influence on the equilibrium ensemble of conformations also have a significant role to play in the functioning of proteins. Taking a comprehensive view of these observations, we propose that the origin of many functional aspects (allostery rand half-sites reactivity in the case of DhPyIRS) lies in subtle rearrangements of interactions and dynamics at a global level.
Resumo:
Mining association rules from a large collection of databases is based on two main tasks. One is generation of large itemsets; and the other is finding associations between the discovered large itemsets. Existing formalism for association rules are based on a single transaction database which is not sufficient to describe the association rules based on multiple database environment. In this paper, we give a general characterization of association rules and also give a framework for knowledge-based mining of multiple databases for association rules.
Resumo:
The program SuSeFLAV is introduced for computing supersymmetric mass spectra with flavour violation in various supersymmetric breaking scenarios with/without see-saw mechanism. A short user guide summarizing the compilation, executables and the input files is provided.
Resumo:
In this paper we discuss SU(N) Chern-Simons theories at level k with both fermionic and bosonic vector matter. In particular we present an exact calculation of the free energy of the N = 2 supersymmetric model (with one chiral field) for all values of the `t Hooft coupling in the large N limit. This is done by using a generalization of the standard Hubbard-Stratanovich method because the SUSY model contains higher order polynomial interactions.
Resumo:
We report on the status of supersymmetric seesaw models in the light of recent experimental results on mu -> e + gamma, theta(13) and the light Higgs mass at the LHC. SO(10)-like relations are assumed for neutrino Dirac Yukawa couplings and two cases of mixing, one large, PMNS-like, and another small, CKM-like, are considered. It is shown that for the large mixing case, only a small range of parameter space with moderate tan beta is still allowed. This remaining region can be ruled out by an order of magnitude improvement in the current limit on BR(mu -> e + gamma). We also explore a model with non-universal Higgs mass boundary conditions at the high scale. It is shown that the renormalization group induced flavor violating slepton mass terms are highly sensitive to the Higgs boundary conditions. Depending on the choice of the parameters, they can either lead to strong enhancements or cancellations within the flavor violating terms. Such cancellations might relax the severe constraints imposed by lepton flavor violation compared to mSUGRA. Nevertheless for a large region of parameter space the predicted rates lie within the reach of future experiments once the light Higgs mass constraint is imposed. We also update the potential of the ongoing and future experimental searches for lepton flavor violation in constraining the supersymmetric parameter space.