527 resultados para Superporous zeolite templated carbon
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Resumo:
We present a comparative study of the low temperature electrical transport properties of the carbon matrix containing iron nanoparticles and the films. The conductivity of the nanoparticles located just below the metal-insulator transition exhibits metallic behavior with a logarithmic temperature dependence over a large temperature interval. The zero-field conductivity and the negative magnetoresistance, showing a characteristic upturn at liquid helium temperature, are consistently explained by incorporating the Kondo relation and the two dimensional electron-electron interaction. The films, in contrast, exhibit a crossover of the conductivity from power-law dependence at high temperatures to an activated hopping law dependence in the low temperature region. The transition is attributed to changes in the energy dependence of the density of states near the Fermi level. The observed magnetoresistance is discussed in terms of quantum interference effect on a three-dimensional variable range hopping mechanism.
Resumo:
Layered LiNi1/3Co1/3Mn1/3O2, which is isostructural to LiCoO2, is considered as a potential cathode material. A layer of carbon coated on the particles improves the electrode performance, Which is attributed to an increase of the grain connectivity and also to protection of metal oxide from chemical reaction. The present work involves in situ synthesis of carbon-coated submicrometer-sized particles of LiNi1/3Co1/3Mn1/3O2 in an inverse microemulsion medium in the presence of glucose. The precursor obtained from the reaction is heated in air at 900 degrees C for 6 h to get crystalline LiNi1/3Co1/3Mn1/3O2. The carbon coating is found to impart porosity as well as higher surface area in relation to bare samples of the compound. The electrochemical characterization studies provide that carbon-coated LiNi1/3Co1/3Mn1/3O2 samples exhibit improved rate capability and cycling performance. The carbon coatings are shown to suppress the capacity fade, which is normally observed for the bare compound. Impedance spectroscopy data provide additional evidence for the beneficial effect of a carbon coating on LiNi1/3Co1/3Mn1/3O2 particles.
Resumo:
A technique to quantify in real time the microstructural changes occurring during mechanical nanoscale fatigue of ultrathin surface coatings has been developed. Cyclic nanoscale loading, with amplitudes less than 100 nm, is achieved with a mechanical probe miniaturized to fit inside a transmission electron microscope (TEM). The TEM tribological probe can be used for nanofriction and nanofatigue testing, with 3D control of the loading direction and simultaneous TEM imaging of the nano-objects. It is demonstrated that fracture of 10-20 nm thick amorphous carbon films on sharp gold asperities, by a single nanoscale shear impact, results in the formation of < 10 nm diameter amorphous carbon filaments. Failure of the same carbon films after cyclic nanofatigue, however, results in the formation of carbon nanostructures with a significant degree of graphitic ordering, including a carbon onion.
Resumo:
For an understanding of the cation selectivity and general binding characteristics of macrotetralide antibiotic nonactin (NA) with ions of different sizes and charges, the nature of binding of divalent cation, Ca2+, to NA and conformation of the NA-Ca2+ complex have been studied by use of 270-MHz proton nuclear magnetic resonance ('H NMR) and carbon-13 nuclear magnetic resonance (13C NMR). The calcium ion induced significantly large changes in chemical shifts for H7, H2, H3, and H5 protons of NA and relatively small changes for H18 and H2' protons. Changes in I3C chemical shift were quite large for carbonyl carbon, C,; it is noteworthy that in the NA-K+ complex, H2 and H2' protons practically do not show any change during complexation and carbonyl carbon shows a much smaller chemical shift change.
Resumo:
The addition of activated carbon particles (Darco-G, average size 4.3,μm) is shown to enhance the initial rate of extraction of copper in a Lewis cell by a mixture of α- and β-hydroxyoximes, when the rate of extraction is controlled by resistances in the organic phase. It is likely that the copper complex is adsorbed by carbon near the interace and partially released in the bulk. The enhancing effect of carbon vanishes when toluene is used as a diluent instead of heptane, presumably because toluene preferentially adsorbs on its surface.
Resumo:
A formulation has been developed using perturbation theory to evaluate the π-contribution to the nuclear spin coupling constants involving nuclei at least one of which is an unsaturated center. This fromulation accounts for the π-contribution in terms of the core polarization and one-center exchange at the π-center. The formulation developed together with the Dirac vector model and Penney-Dirac bond-order formalisms was employed to calculate the geminal (two-bond) proton coupling constants of carboxyl carbons in α-disubstituted acetic acids. The calculated coupling constants were found to have an orientational dependence. The results of the calculation are in good agreement with the experimental values.
Resumo:
We used molecular dynamics (MD) simulations to study the reorientational dynamics of water molecules confined inside narrow carbon nanotubes immersed in a bath of water. Our simulations show that the confined water molecules exhibit bistability in their reorientational relaxation, which proceeds by angular jumps between the two stable states. The angular jump of a water molecule in the bulk involves the breaking of a hydrogen bond with one of its neighbors and the formation of a hydrogen bond with a different neighbor. In contrast, the angular jump of a confined water molecule corresponds to an interchange of the two hydrogen atoms that can form a hydrogen bond with the same neighbor. The free energy barrier between these two states is a few k(B)T. The analytic solution of a simplified two-state jump model that qualitatively explains the reorientational behavior observed in simulations is also presented.
Resumo:
Porous carbon oxygen-reducing electrodes incorporated with perovskite oxide catalysts are reported. It has been possible to fabricate high-performance oxygen-reducing electrodes by introducing La0.5Sr0.5CoO3 and La0.99Sr0.01NiO3 with the activated coconut-shell charcoal; these electrodes could sustain load currents as high as 1 A cm−2 without serious degradation. A model to explain oxygen-reducing activity of these oxides has been proposed.
Resumo:
A comparative study of the electric-field induced hopping transport probes the effective dimensionality (D) in bulk and ultrathin films of single-wall carbon nanotubes (SWNTs). The values of the scaling function exponents for the electroconductance are found to be consistent with that in three-dimensional and two-dimensional systems. The significant difference in threshold voltage in these two types of SWNTs is a consequence of the variation in the number of energetically favorable sites available for charge carriers to hop by using the energy from the field. Furthermore, a modification to the magnetotransport is observed under high electric-fields.
Resumo:
The oxidation of sodium sulphide in the presence of fine activated carbon particles (4.33 μm) has been studied at 75°C in a foam bed contactor. The existing single-stage model of a foam bed reactor has been modified to take into account the effect of heterogeneous catalyst particles and the absorption in the storage section. The variables studied are catalyst loading, initial sulphide concentration and the average liquid hold-up in the foam bed. It is seen that the rates of oxidation of sodium sulphide are considerably enhanced by an increase in the loading of activated carbon particles. The rate of conversion of sodium sulphide also increases with an increase in the average liquid hold-up in the foam. The modified model predicts these effects fairly well. The contribution of reaction in the storage section is found to be less than 2% of the overall rate of conversion in the contactor.
Resumo:
A Monte Carlo study along with experimental uptake measurements of 1,2,3-trimethyl benzene, 1,2,4-trimethyl benzene and 1,3,5-trimethyl benzene (TMB) in beta zeolite is reported. The TraPPE potential has been employed for hydrocarbon interaction and harmonic potential of Demontis for modeling framework of the zeolite. Structure, energetics and dynamics of TMB in zeolite beta from Monte Carlo runs reveal interesting information about the diameter, properties of these isomers on confinement. Of the three isomers, 135TMB is supposed to have the largest diameter. It is seen TraPPE with Demontis potential predicts a restricted motion of 135TMB in the channels of zeolite beta.Experimentally, 135TMB has the highest transport diffusivity whereas MID results suggest this has the lowest self diffusivity. (C) 2009 Elsevier Inc. Ail rights reserved.
Resumo:
Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.