57 resultados para Supercritical
Resumo:
The solubilities of benzene derivatives in supercritical carbon dioxide was determined by the saturation method over the pressure range (9.5 to 14.5) MPa. The solubilities were determined at (308 and 313) K for 1-chloro-2,4-dinitrobenzene and (308, 318, and 328) K for m-dinitrobenzene. At 308K, the solubility (in mole fraction) of 1-chloro-2,4-dinitrobenzene varied from (2.83 to 5.88).10(-3) while the solubility of m-dinitrobenzene increased from (2.05 to 5.54).10(-3) as the pressure increased from (9.5 to 14.5) MPa. However, the solubilities of both compounds decreased with increasing temperature. Models based on the solubility parameter and semiempirical models such as the Mendez-Santiago-Teja model, the Gordillo model, and the association model, were used to correlate the experimental solubility data for the benzene derivatives.
Resumo:
We show analytically that in dilute solutions of high molecular weight polymers, a collapse transition of the chain can be induced by proximity to the critical point of the solvent. The transition is driven by the fluctuations in the medium, which lead to an effective attractive interaction of long range between different parts of the polymer. At the critical point itself, however, the chain adopts the same average conformations that characterize its size in the off-critical limit. In other words, on approach to the critical point, the polymer is found first to contract and collapse, and then subsequently to return to its original dimensions. This behavior has recently been observed in simulations of polymer-solvent mixtures near the lower critical solution temperature of the system, and it is also known to be characteristic of solutions of polymers in bicomponent solvent mixtures near the critical consolute point of the two solvents. (C) 1999 American Institute of Physics. [S0021-9606(99)50431-5].
Resumo:
Commercially important flavor esters of isoamyl alcohol, catalyzed by crude hog pancreas lipase (HPL), were synthesized under solvent-free conditions and in supercritical carbon dioxide. The esters synthesized were isoamyl acetate, isoamyl propionate, isoamyl butyrate, and isoamyl octanoate. Very low yields (3-4%) of isoamyl acetate were obtained, but high yields for the other three esters were obtained under both supercritical and solvent-free conditions. The yields of esters of the even-carbon acids, isoamyl acetate, butyrate, and octanoate, increased with increasing chain length, whereas the yield of isoamyl propionate was higher than that of isoamyl butyrate. The optimum temperature of the reaction was higher under supercritical conditions (45 degreesC) than under solvent-free conditions (35-40 degreesC). The effects of other parameters such as alcohol concentration, water concentration, and enzyme loading were investigated. An increase in the water concentration decreased the conversion significantly in supercritical carbon dioxide but not under solvent-free conditions. The optimum ratio of alcohol to acid was dependent on the extent of inhibition by the acid. Although providing a higher apparent yield by being run in a highly concentrated medium, the overall conversion under solvent-free conditions was lower than that under supercritical conditions for similar enzyme concentrations, indicating that the synthesis of esters in supercritical carbon dioxide might be a viable option.
Resumo:
Temperature- and density-dependent vibrational relaxation data for the v6 asymmetric stretch of W(CO)6 in supercritical fluoroform (trifluoromethane, CHF3) are presented and compared to a recent theory of solute vibrational relaxation. The theory, which uses thermodynamic and hydrodynamic conditions of the solvent as input parameters, shows very good agreement in reproducing the temperature- and density-dependent trends of the experimental data with a minimum of adjustable parameters. Once a small number of parameters are fixed by fitting the functional form of the density dependence, there are no adjustable parameters in the calculations of the temperature dependence. © 2001 American Institute of Physics.
Resumo:
The equilibrium solubilities of dihydroxy benzene isomers (resorcinol and pyrocatechol) and its mixture were experimentally determined at different temperatures (308, 318, 328, and 338 K) in the pressure range of 9.8-16.2 MPa. In the ternary system, the solubilities of pyrocatechol increased while the solubilities of resorcinol decreased relative to their binary solubilities. A new association model was developed based on the concept of formation of solvate complex molecules to correlate the solubility of the solid for mixed solids in supercritical carbon dioxide (SCCO(2)). The model equation relates the solubility of solute in terms of the cosolute composition, temperature, pressure and density of SCCO(2). The proposed model correlated the solubilities of sixteen solid systems taken from the literature and current experimental data with an average absolute relative deviation (AARD) of around 4%. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
A thermodynamic model was developed for modeling the solubilities of fatty acids in supercritical carbon dioxide. The model combines the Peng-Robinson equation of state (EOS) with the two parameter van der Waal's mixing rules. The model is applied to predict the solubilities of various fatty acids. The two adjustable interaction parameters in the model are found to vary linearly with the chain length of the fatty acids. Thus this model can be used to predict the solubilities of various fatty acids in supercritical carbon dioxide. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
The equilibrium solubilities of the solids in supercritical carbon dioxide (SCCO(2)) are considerably enhanced in the presence of cosolvents. The solubilities of m-dinitrobenzene at 308 and 318 K over a pressure range of 9.5-14.5 MPa in the presence of 1.13-2.17 mol% methanol as cosolvent were determined. The average increase in the solubilities in the presence of methanol compared to that obtained in the absence of methanol was around 35%. A new semi-empirical equation in terms of temperature, pressure, density of SCCO(2) and cosolvent composition comprising of 7 adjustable parameters was developed. The proposed model was used to correlate the solubility of the solids in SCCO(2) for the 44 systems available in the literature along with current data. The average absolute relative deviation of the experimental data from the model equation was 3.58%, which is better than the existing models. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The investigation of ternary solubilities of solids is essential for the efficient design of extraction processes. The ternary solubilities of solids for cosolvent and cosolute systems are complex functions of temperature, pressure and cosolvent/cosolute composition. The intermolecular interactions between the molecules have a significant role in the solubilities of mixed solids in SCCO2 and cosolvent ternary systems. Two model equations were developed for ternary SCCO2 + cosolvent/cosolute systems by using association and activity coefficient models. Both the model equations consist of five adjustable parameters and correlate the ternary solubilities of solids in terms of temperature, pressure, density and cosolvent/cosolute composition. The model equation for cosolvent systems correlated 43 solid pollutants-cosolvent-SCCO2, while the model equation for cosolute systems correlated 19 solute-cosolute-SCCO2 systems available in literature. The average AARD of the model equations are 4.73% and 4.87% for cosolvent ternary systems and mixed solids in SCCO2, respectively. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Selectivity of the particular solvent to separate a mixture is essential for the optimal design of a separation process. Supercritical carbon dioxide (SCCO2) is widely used as a solvent in the extraction, purification and separation of specialty chemicals. The effect of the temperature and pressure on selectivity is complicated and varies from system to system. The effect of temperature and pressure on selectivity of SCCO2 for different solid mixtures available in literature was analyzed. In this work, we have developed two model equations to correlate the selectivity in terms of temperature and pressure. The model equations have correlated the selectivity of SCCO2 satisfactorily for 18 solid mixtures with an average absolute relative deviation (AARD) of around 5%. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The solubilities of various solid pollutants in supercritical carbon dioxide were investigated. The intermolecular interactions play a significant role in determining the solubilities of solids in supercritical carbon dioxide. A new model equation was derived by using the concepts of association and activity coefficient model to correlate the solubilities of solids. The model equation combines the association and Wilson activity coefficient models and includes the interaction potentials between the molecules, which are useful in understanding the behavior of the solid solutes in SCCO2. The new model equation involves five adjustable parameters to correlate the solubilities of solids by incorporating the interactions between the molecules. The equation correlated 75 solid systems with an average AARD of around 9%, which was better than the correlations obtained from standard models such as Mendez Santiago-Teja (MT) model and association model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The ternary solubilities of solid isomers of nitrobenzoic acid (NBA) were experimentally determined at 308, 318 and 328K over a pressure range of 12-18 MPa in supercritical carbon dioxide (SCCO2). Compared to its binary solubility, the ternary solubilities of m-NBA increased at 308 K while it decreased at 328 K. However, the ternary solubilities of p-NBA increased at all temperatures and pressures except at 13 MPa and 328K. A new model was developed by applying solution model and activity coefficient model for the ternary solubilities of pharmaceutical and non-pharmaceutical solid mixtures in terms of temperature, density and cosolute composition. The model equation involves four temperature independent constraint-free parameters. The model equation correlates the ternary solubilities of seven pharmaceutical solid mixtures along with current data with an average AARD around 9.5% and sixteen non-pharmaceutical solid mixtures with 9% AARD. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The equilibrium quaternary solubilities of dihydroxybenzene (resorcinol + pyrocatechol + hydroquinone + SCCO2) isomers were experimentally determined at 308, 318 and 328K over a pressure range of 9.8-15.7 MPa by using a saturation method. The effects of temperature, pressure and the components on each other have been thoroughly investigated. The selectivity of SCCO2 for ternary (resorcinol + pyrocatechol + SCCO2) and quaternary systems was discussed. A new model equation for quaternary solubilities of solids has been developed by accounting for non-idealities by combining the solution model with Wilson activity coefficient model. The model equation has five adjustable parameters and correlates the quaternary solubilities of current data along with two other quaternary data reported in the literature. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Supercritical carbon dioxide based Brayton cycle for possible concentrated solar power applications is investigated and compared with trans- and sub-critical operations of the same fluid. Thermal efficiency, specific work output and magnitude of irreversibility generation are used as some of the performance indicators. While the thermal efficiency increases almost linearly with low side pressure in the sub- and trans-critical cycles, it attains a maximum in the supercritical regime at 85 bar after which there are diminishing returns on increasing the low side pressure. It is also found that supercritical cycle is capable of producing power with a thermal efficiency of >30% even at a lower source temperature (820K) and accounting for foreseeable non-idealities albeit with a higher turbine inlet pressure (similar to 300 bar) which is not matched by a conventional sub-critical cycle even with a high source temperature of 978K. The reasons for lower efficiency than in an ideal cycle are extracted from an irreversibility analysis of components, namely, compressor, regenerator, turbine and gas cooler. Low sensitivity to the source temperature and extremely small volumetric flow rates in the supercritical cycle could offset the drawback of high pressures through a compact system.
Resumo:
The experimental solubilities of the mixture of nitrophenol (m- and p-) isomers were determined at 308, 318 and 328 K over a pressure range of 10-17.55 MPa. Compared to the binary solubilities, the ternary solubilities of m-nitrophenol increased at 308, 318 and 328 K. The ternary solubilities of p-nitrophenol increased at 308 K, while the ternary solubilities decreased at lower pressures and increased at higher pressure at 318 and 328 K. The solubilities of the solid mixtures in supercritical carbon dioxide (SCCO2) were correlated with solution models by incorporating the non-idealities using activity coefficient based models. The Wilson and NRTL activity coefficient models were applied to determine the nature of the interactions between the molecules. The equation developed by using the NRTL model has three parameters and correlates mixture solubilities of solid solutes in terms of temperature and cosolute composition. The equation derived from the Wilson model contains five parameters and correlates solubilities in terms of temperature, density and cosolute composition. These two new equations developed in this work were used to correlate the solubilities of 25 binary solid mixtures including the current data. The average AARDs of the model equations derived using the NRTL and Wilson models for the solid mixtures were found to be 7% and 4%, respectively. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The solubilities of butyl stearate and butyl laurate were determined in the temperature range of 308 K to 323 K and 313 K to 328 K, respectively, at pressures of 10 MPa to 16 MPa. The solubility of butyl laurate was higher than that of butyl stearate by almost an order in magnitude. Retrograde behavior was observed throughout the investigated pressure range. Semiempirical models such as Mendez-Teja, Chrastil, and other density-based models were used to correlate the experimental data of our work as well as several other liquid solutes.