140 resultados para Storage batteries


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two algorithms that improve upon the sequent-peak procedure for reservoir capacity calculation are presented. The first incorporates storage-dependent losses (like evaporation losses) exactly as the standard linear programming formulation does. The second extends the first so as to enable designing with less than maximum reliability even when allowable shortfall in any failure year is also specified. Together, the algorithms provide a more accurate, flexible and yet fast method of calculating the storage capacity requirement in preliminary screening and optimization models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

2 V/40 Ah valve-regulated lead-acid (VRLA) cells have been constructed with negative plates employing carbon black as well as an admixture of carbon black fumed silica as additives in negative active material for partial-state-of-charge (PSoC) applications. Electrical performance of such cells is compared with conventional 2 V/40 Ah VRLA cells for PSoC operation. Active material utilization has been found to be higher for carbon-black fumed-silica mixed negative plates while formation is faster for cells with carbon-black mixed negative plates. Both faradaic efficiency and percentage capacity delivered have been found to be higher for cells with carbon-black + fumed-silica mixed negative plates. However, a high self-discharge rate is observed for cells with carbon-black + fumed-silica mixed negative plates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the paper new way of classifying spillways have been suggested. The various types, merits and demerits or existing spillway devices have been discussed. The considerations governing the choice of a design of a spillway have been mention. A criteria for working out the economics of spillway design has been suggested. An efficient surplus sing device has next been described and compared with other devices. In conclusion it has been suggested that the most efficient and at the same time economical arrangement will be a combination of devices. In conclusion it has been suggested will be a combination of crest gate, volute siphons and high head gates. The appendix gives a list of devices used in dams in various parts of the world.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is an endless quest for new materials to meet the demands of advancing technology. Thus, we need new magnetic and metallic/semiconducting materials for spintronics, new low-loss dielectrics for telecommunication, new multi-ferroic materials that combine both ferroelectricity and ferromagnetism for memory devices, new piezoelectrics that do not contain lead, new lithium containing solids for application as cathode/anode/electrolyte in lithium batteries, hydrogen storage materials for mobile/transport applications and catalyst materials that can convert, for example, methane to higher hydrocarbons, and the list is endless! Fortunately for us, chemistry - inorganic chemistry in particular - plays a crucial role in this quest. Most of the functional materials mentioned above are inorganic non-molecular solids, while much of the conventional inorganic chemistry deals with isolated molecules or molecular solids. Even so, the basic concepts that we learn in inorganic chemistry, for example, acidity/basicity, oxidation/reduction (potentials), crystal field theory, low spin-high spin/inner sphere-outer sphere complexes, role of d-electrons in transition metal chemistry, electron-transfer reactions, coordination geometries around metal atoms, Jahn-Teller distortion, metal-metal bonds, cation-anion (metal-nonmetal) redox competition in the stabilization of oxidation states - all find crucial application in the design and synthesis of inorganic solids possessing technologically important properties. An attempt has been made here to illustrate the role of inorganic chemistry in this endeavour, drawing examples from the literature its well as from the research work of my group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ce1-xRuxO2-delta (x = 0.05 and 0.10) of 8-10 nm sizes have been synthesized by hydrothermal method using melamine as complexing agent. Compounds have been characterized by powder X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and energy-dispersive X-ray analysis (EDX) and their structures have been refined by the Rietveld method.The compounds crystallize in fluorite structure and the composition is Ce1-xRuxO2-x/2 where Ru is in +4 state and Ce is in mixed-valence (+3, +4) state. Substitution of Ru4+ ion in CeO2 activated the lattice oxygen. Ce1-xRuxO2-x/2 reversibly releases 0.22[O] and 0.42[O] for x = 0.05 and 0.10, respectively, which is higher than the maximumpossible OSC of 0.22 [O] observed for Ce0.50Zr0.50O2. Utilization of Higher OSC of Ce1-xRuxO2-delta (x = 0.05 and 0.10) is also reflected in terms of low-temperature CO oxidation with these catalysts, both in the presence and absence of feed oxygen. The Ru4+ ion acts as an active center for reducing molecules (CO, hydrocarbon ``HC'') and oxide ion vacancy acts as an active center for O-2 and NO, leading to low-temperature NO conversion to N-2. Thus due to Ru4+ ion, Ce1-xRuxO2-delta is not just a high oxygen storage material but also shows high activity toward CO, hydrocarbon ``HC'' oxidation, and NO reduction by CO at low temperature with high N-2 selectivity for three-way catalysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Now that crystals are being considered suitable for high density optical information storage, it is important to reduce the noise levels of retrieved images. The paper describes a simple technique to bring this about.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal decomposition of Ca(OH)2 with and without additives has been experimentally investigated for its application as a thermochemical energy storage system. The homogeneous reaction model gives a satisfactory fit for the kinetic data on pure and Ni(OH)2---, Zn(OH)2--- and Al(OH)3---doped Ca(OH)2 and the order of reaction is 0.76 in all cases except for the Al(OH)3-doped sample for which the decomposition is zero order. These additives are shown not only to enhance the reaction rate but also to reduce the decomposition temperature significantly. Some models for solid decomposition reactions, and possible mechanisms in the decomposition of solids containing additives, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ageing behaviour, leading to ballistic changes, has been studied as a function of oxidizer loading in polystyrene/ammonium perchlorate solid-propellants. The ageing studies were carried out at 100 °C in air. Change in burning rate decreased as the oxidizer loading increased from 75 to 80%. The change in thermal decomposition rates both at 230 and 260 °C also decreased as the oxidizer loading in the propellants increased. The shapes of the plots of the changes in burning rate and thermal decomposition rate (230 and 260 °C) at different storage times for different oxidizer-loaded propellants seem to be exactly similar. These results lead to the conclusion that the thermal decomposition of the propellant may be responsible for bringing about the ballistic changes during the ageing process. Infrared studies of the binder portion of the aged propellant indicate that peroxide formation takes place during the course of ageing and that peroxide formation for a particular storage time and temperature increases as the loading decreases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ageing behaviour of polystyrene (PS)/ammonium perchlorate (AP) propellent leading to ballistic changes has been studied. It follows a zero-order kinetic law. Ageing behaviour leading to change in burning rate ( ) in the temperature range of 60–200 ° C was found to remain the same. The dependence of the change of the average thermal decomposition (TD) rate at 230 and 260°C on the change in burning rate for the propellant aged at 100 ° C in air suggests that the slow TD of the propellant is the cause of ageing. The safe-life (for a pre-assigned burning-rate change limit) at 25 ° C in air has been calculated as a function of the rate of change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room-temperature zinc ion-conducting molten electrolytes based on acetamide, urea, and zinc perchlorate or zinc triflate have been prepared and characterized by various physicochemical, spectroscopic, and electrochemical techniques. The ternary molten electrolytes are easy to prepare and can be handled under ambient conditions. They show excellent stability, high ionic conductivity, relatively low viscosity, and other favorable physicochemical and electrochemical properties that make them good electrolytes for rechargeable zinc batteries. Specific conductivities of 3.4 and 0.5 mS cm(-1) at 25 degrees C are obtained for zinc-perchlorate-and zinc-triflate-containing melts, respectively. Vibrational spectroscopic data reveal that the free ion concentration is high in the optimized composition. Rechargeable Zn batteries have been assembled using the molten electrolytes, with gamma-MnO2 as the positive electrode and Zn as the negative electrode. They show excellent electrochemical characteristics with high discharge capacities. This study opens up the possibility of using acetamide-based molten electrolytes as alternate electrolytes in rechargeable zinc batteries. (C) 2009 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft matter provides diverse opportunities for the development of electrolytes for all solid state lithium batteries. Here we review soft matter solid electrolytes for lithium batteriesthat are primarily obtained starting from liquid electrolytic systems. This concept of solid electrolyte synthesis from liquid is significantly different from prevalent approaches. The novelty of our approach is discussed in the light of various fundamental issues and in relation to its application to rechargeable lithium batteries.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate estimations of water balance are needed in semi-arid and sub-humid tropical regions, where water resources are scarce compared to water demand. Evapotranspiration plays a major role in this context, and the difficulty to quantify it precisely leads to major uncertainties in the groundwater recharge assessment, especially in forested catchments. In this paper, we propose to assess the importance of deep unsaturated regolith and water uptake by deep tree roots on the groundwater recharge process by using a lumped conceptual model (COMFORT). The model is calibrated using a 5 year hydrological monitoring of an experimental watershed under dry deciduous forest in South India (Mule Hole watershed). The model was able to simulate the stream discharge as well as the contrasted behaviour of groundwater table along the hillslope. Water balance simulated for a 32 year climatic time series displayed a large year-to-year variability, with alternance of dry and wet phases with a time period of approximately 14 years. On an average, input by the rainfall was 1090 mm year(-1) and the evapotranspiration was about 900 mm year(-1) out of which 100 mm year(-1) was uptake from the deep saprolite horizons. The stream flow was 100 mm year(-1) while the groundwater underflow was 80 mm year(-1). The simulation results suggest that (i) deciduous trees can uptake a significant amount of water from the deep regolith, (ii) this uptake, combined with the spatial variability of regolith depth, can account for the variable lag time between drainage events and groundwater rise observed for the different piezometers and (iii) water table response to recharge is buffered due to the long vertical travel time through the deep vadose zone, which constitutes a major water reservoir. This study stresses the importance of long term observations for the understanding of hydrological processes in tropical forested ecosystems. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The lead-acid battery is often the weakest link in photovoltaic (PV) installations. Accordingly, various versions of lead-acid batteries, namely flooded, gelled, absorbent glass-mat and hybrid, have been assembled and performance tested for a PV stand-alone lighting system. The study suggests the hybrid VRLA batteries, which exhibit both the high power density of absorbent glass-mat design and the improved thermal properties of the gel design, to be appropriate for such an application. Among the VRLA-type batteries studied here water loss for the hybrid VRLA batteries is minimal and charge-acceptance during the service at high temperatures is better in relation to their AGM counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CeO2-SnO2 solid solution has been reported to possess high oxygen storage/release property which possibly originates from local structural distortion. We have performed first-principles based density functional calculations of Ce1-xSnxO2 structure (x=0, 0.25, 0.5, 1) to understand its structural stability in fluorite in comparison to rutile structure of the other end-member SnO2, and studied the local structural distortion induced by the dopant Sn ion. Analysis of relative energies of fluorite and rutile phases of CeO2, SnO2, and Ce1-xSnxO2 indicates that fluorite structure is the most stable for Ce1-xSnxO2 solid solution. An analysis of local structural distortions reflected in phonon dispersion show that SnO2 in fluorite structure is highly unstable while CeO2 in rutile structure is only weakly unstable. Thus, Sn in Ce1-xSnxO2-fluorite structure is associated with high local structural distortion whereas Ce in Ce1-xSnxO2-rutile structure, if formed, will show only marginal local distortion. Determination of M-O (M=Ce or Sn) bond lengths and analysis of Born effective charges for the optimized structure of Ce1-xSnxO2 show that local coordination of these cations changes from ideal eightfold coordination expected of fluorite lattice to 4+4 coordination, leading to generation of long and short Ce-O and Sn-O bonds in the doped structure. Bond valence analyses for all ions show the presence of oxygen with bond valence similar to 1.84. These weakly bonded oxygen ions are relevant for enhanced oxygen storage/release properties observed in Ce1-xSnxO2 solid solution. (C) 2010 American Institute of Physics.