179 resultados para Stochastic Integral
Resumo:
This note is concerned with the problem of determining approximate solutions of Fredholm integral equations of the second kind. Approximating the solution of a given integral equation by means of a polynomial, an over-determined system of linear algebraic equations is obtained involving the unknown coefficients, which is finally solved by using the least-squares method. Several examples are examined in detail. (c) 2009 Elsevier Inc. All rights reserved.
Resumo:
We report the results of two studies of aspects of the consistency of truncated nonlinear integral equation based theories of freezing: (i) We show that the self-consistent solutions to these nonlinear equations are unfortunately sensitive to the level of truncation. For the hard sphere system, if the Wertheim–Thiele representation of the pair direct correlation function is used, the inclusion of part but not all of the triplet direct correlation function contribution, as has been common, worsens the predictions considerably. We also show that the convergence of the solutions found, with respect to number of reciprocal lattice vectors kept in the Fourier expansion of the crystal singlet density, is slow. These conclusions imply great sensitivity to the quality of the pair direct correlation function employed in the theory. (ii) We show the direct correlation function based and the pair correlation function based theories of freezing can be cast into a form which requires solution of isomorphous nonlinear integral equations. However, in the pair correlation function theory the usual neglect of the influence of inhomogeneity of the density distribution on the pair correlation function is shown to be inconsistent to the lowest order in the change of density on freezing, and to lead to erroneous predictions. The Journal of Chemical Physics is copyrighted by The American Institute of Physics.
Resumo:
In certain molecular models, and related one-dimensional field theories, localized objects appear with half-integral expectation values of charge. We consider whether these states are eigenstates of charge, with half-integral eigenvalue. We find that it is indeed so for a suitably diffuse definition of the charge operator in question. This diffuse charge operator has a spectrum which approaches a continuum. The analysis is made on a lattice, to avoid divergence ambiguities, and on a finite length, which is only subsequently made large. The half-integral charge phenomenon is not tied to solitons, but can also arise as an end effect.
Resumo:
It is shown that the a;P?lication of the Poincare-Bertrand fcm~ulaw hen made in a suitable manner produces the s~lutiano f certain singular integral equations very quickly, thc method of arriving at which, otherwise, is too complicaled. Two singular integral equations are considered. One of these quaiions is with a Cauchy-tyge kcrnel arid the other is an equalion which appears in the a a w guide theory and the theory of dishcations. Adifferent approach i? alw made here to solve the singular integralquation> of the waveguide theor? ind this i ~ v o l v eth~e use of the inversion formula of the Cauchy-type singular integral equahn and dudion to a system of TIilberl problems for two unknowns which can be dwupled wry easily to obi& tbe closed form solutim of the irilegral equatlou at band. The methods of the prescnt paper avoid all the complicaled approaches of solving the singular integral equaticn of the waveguide theory knowr todate.
Resumo:
Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.
Resumo:
The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].
Efficient implementations of a pseudodynamical stochastic filtering strategy for static elastography
Resumo:
A computationally efficient pseudodynamical filtering setup is established for elasticity imaging (i.e., reconstruction of shear modulus distribution) in soft-tissue organs given statically recorded and partially measured displacement data. Unlike a regularized quasi-Newton method (QNM) that needs inversion of ill-conditioned matrices, the authors explore pseudodynamic extended and ensemble Kalman filters (PD-EKF and PD-EnKF) that use a parsimonious representation of states and bypass explicit regularization by recursion over pseudotime. Numerical experiments with QNM and the two filters suggest that the PD-EnKF is the most robust performer as it exhibits no sensitivity to process noise covariance and yields good reconstruction even with small ensemble sizes.
Resumo:
Time series, from a narrow point of view, is a sequence of observations on a stochastic process made at discrete and equally spaced time intervals. Its future behavior can be predicted by identifying, fitting, and confirming a mathematical model. In this paper, time series analysis is applied to problems concerning runwayinduced vibrations of an aircraft. A simple mathematical model based on this technique is fitted to obtain the impulse response coefficients of an aircraft system considered as a whole for a particular type of operation. Using this model, the output which is the aircraft response can be obtained with lesser computation time for any runway profile as the input.
Resumo:
Can certain soliton states, with half integral expectation value of charge, be also eigenstates of charge X with half integral eigenvalue? It can be so only with a somewhat sophisticated definition of charge.
Resumo:
Syntheses of protein molecules in a cell are carried out by ribosomes.A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a Michaelis-Menten-type'' equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
The third-kind linear integral equation Image where g(t) vanishes at a finite number of points in (a, b), is considered. In general, the Fredholm Alternative theory [[5.]] does not hold good for this type of integral equation. However, imposing certain conditions on g(t) and K(t, t′), the above integral equation was shown [[1.], 49–57] to obey a Fredholm-type theory, except for a certain class of kernels for which the question was left open. In this note a theory is presented for the equation under consideration with some additional assumptions on such kernels.
Resumo:
A transformation is suggested which can transform a non-Gaussian monthly hydrological time series into a Gaussian one. The suggested approach is verified with data of ten Indian rainfall time series. Incidentally, it is observed that once the deterministic trends are removed, the transformation leads to an uncorrelated process for monthly rainfall. The procedure for normalization is general enough in that it should be also applicable to river discharges. This is verified to a limited extent by considering data of two Indian river discharges.