52 resultados para Sterility in plants.
Resumo:
In attempting to determine the nature of the enzyme system mediating the conversion of catechol to diphenylenedioxide 2,3-quinone, in Tecoma leaves, further purification of the enzyme was undertaken. The crude enzyme from Tecoma leaves was processed further by protamine sulfate precipitation, positive adsorption on tricalcium phosphate gel, and elution and chromatography on DEAE-Sephadex. This procedure yielded a 120-fold purified enzyme which stoichiometrically converted catechol to diphenylenedioxide 2,3-quinone. The purity of the enzyme system was assessed by polyacrylamide gel electrophoresis. The approximate molecular weight of the enzyme was assessed as 200,000 by gel filtration on Sephadex G-150. The enzyme functioned optimally at pH 7.1 and at 35 °C. The Km for catechol was determined as 4 × 10−4 Image . The enzyme did not oxidize o-dihydric phenols other than catechol and it did not exhibit any activity toward monohydric and trihydric phenols and flavonoids. Copper-chelating agents did not inhibit the enzyme activity. Copper could not be detected in the purified enzyme preparations. The purified enzyme was not affected by extensive dialysis against copper-complexing agents. It did not show any peroxidase activity and it was not inhibited by catalase. Hydrogen peroxide formation could not be detected during the catalytic reaction. The enzymatic conversion of catechol to diphenylenedioxide 2,3-quinone by the purified Tecoma leaf enzyme was suppressed by such reducing agents as GSH and cysteamine. The purified enzyme was not sensitive to carbon monoxide. It was not inhibited by thiol inhibitors. The Tecoma leaf was found to be localized in the soluble fraction of the cell. Treatment of the purified enzyme with acid, alkali, and urea led to the progressive denaturation of the enzyme.
Resumo:
Nucleotide pyrophosphatase of mung bean seedlings has earlier been isolated in our laboratory in a dimeric form (Mr 65,000) and has been shown to be converted to a tetramer by AMP and to a monomer by p-hydroxymercuribenzoate. All the molecular forms were enzymatically active with different kinetic properties. By a modified procedure using blue-Sepharose affinity chromatography, we have now obtained a dimeric form of the enzyme which is desensitized to AMP interaction. The molecular weight of the desensitized form of the enzyme was found to be the same as that of the native dimeric enzyme. However, the desensitized enzyme functioned with a linear time course, contrary to the biphasic time course exhibited by the native enzyme. In addition, it was not converted to a tetramer on the addition of AMP, had only one binding site for adenine nucleotides, and p-hydroxy-mercuribenzoate had no effect on the time course of the reaction or on the molecular weight of the enzyme. The temperature optimum of the desensitized enzyme was found to be 67 °C in contrast to the optimum of 49 °C for the native dimer. Fifty percent of the tryptophan residues of the desensitized enzyme were not accessible for quenching by iodide. Fluorescence studies gave Kd values of 0.34, 2.2, and 0.8 mImage for AMP, ADP, and ATP, which were close to the Ki values of 0.12, 2.2, and 0.9 mImage , respectively, for these nucleotides. The binding and inhibition studies with AMP and its analogs showed that the 6-amino group and the 5′-phosphate group were essential for the inhibition of the enzyme activity.
Resumo:
Plant seeds usually have high concentrations of proteinase and amylase inhibitors. These inhibitors exhibit a wide range of specificity, stability and oligomeric structure. In this communication, we report analysis of sequences that show statistically significant similarity to the double-headed alpha-amylase/trypsin inhibitor of ragi (Eleusine coracana). Our aim is to understand their evolutionary and structural features. The 14 sequences of this family that are available in the SWISSPROT database form three evolutionarily distinct branches. The branches relate to enzyme specificities and also probably to the oligomeric state of the proteins and not to the botanical class of the plant from which the enzymes are derived. This suggests that the enzyme specificities of the inhibitors evolved before the divergence of commercially cultivated cereals. The inhibitor sequences have three regions that display periodicity in hydrophobicity. It is likely that this feature reflects extended secondary structure in these segments. One of the most variable regions of the polypeptide corresponds to a loop, which is most probably exposed in the native structure of the inhibitors and is responsible for the inhibitory property.
Resumo:
Sugars perform two vital functions in plants: as compatible solutes protecting the cell against osmotic stress and as mobile source of immediate and long-term energy requirement for growth and development. The two sugars that occur commonly in nature are sucrose and trehalose. Sucrose comprises one glucose and one fructose molecule; trehalose comprises two glucose molecules. Trehalose occurs in significant amounts in insects and fungi which greatly outnumber the plants. Surprisingly, in plants trehalose has been found in barely detectable amounts, if at all, raising the question `why did nature select sucrose instead of trehalose as the mobile energy source and as storage sugar for the plants'? Modelling revealed that when attached to the ribbon-shaped beta-1,4 glucan a trehalose molecule is shaped like a hook. This suggests that the beta-1,4 glucan chains with attached trehalose will fail to align to form inter-chain hydrogen bonds and coalesce into a cellulose microfibril, as a result of which in trehalose-accumulating plant cells, the cell wall will tend to become leaky. Thus in plants an evolutionary selection was made in favour of sucrose as the mobile energy source. Genetic engineering of plant cells for combating abiotic stresses through microbial trehalose-producing genes is fraught with risk of damage to plant cell walls.
Resumo:
A toxic effect of a,a-trehalose in an angiospermic plant, Cuscuta reflexa (dodder), Is described. This disaccharide and Its analogs, 2-aminotrehalose and 4-aminotbhakose, induced a raid blackening of the terminal region of the vine which is Involved in elongation growth. From the results of in vitro growth of several angkiopermic plants and determination of trehalase activity in them, it is concluded that the toxic effect of trehalose in Cucaa is because of the very low trehalas activity In the vine. As a result, trehalose accumulates In the vine and interferes with some process closely associated with growth. The growth potential of Lemma (a duckweed) in a medium containing trehalose as the carbon source was ihreversibly lost upon addition of trealosamine, an Inhibitor of trehalase activity. It is concluded that, if allowed to accumulate within the tissue, trehalose may be potentiaMly toxic or inhibitory to higher plants in generaL The presence of trhalase actvity in plants, where Its substrate has not been found to occur, is envisged to relieve the plant from the toxic effects of trehalose which it may encounter in soil or during association with fungi or insects.
Resumo:
In Neurospora crassa, the activity of δ-aminolevulinate dehydratase, the second and rate-limiting enzyme of the heme-biosynthetic pathway, is low in normal cells compared to the activity detected in plants, animals and bacteria. The activity is almost undetectable when Neurospora crassa is grown under iron-deficient conditions. The enzyme activity increases strikingly on addition of iron to iron-deficient cultures. This increase can be blocked by the addition of protoporphyrin, the penultimate product of the heme-biosynthetic pathway, to the cultures. The question whether iron directly acts at the genetic level or acts merely by removing protoporphyrin, converting the latter into heme prosthetic groups of hemoproteins, has been investigated by studying the effect of inhibition of heme synthesis on the induction of δ-aminolevulinate dehydratase. It has been found that treatments with levulinic acid or cyanide which inhibit the formation of the porphyrin moiety, induce δ-aminolevulinate dehydratase, whereas treatments which inhibit at a step after protoporphyrin formation (iron-deficiency and cobalt treatment) repress the enzyme. The endogenous levels of protoporphyrin are strictly controlled: a decrease below the optimum level causing induction and an increase above the optimum level leading to repression of δ-aminolevulinate dehydratase. Levulinic acid and cyanide can induce the enzyme in iron-deficient cultures in the absence of added iron, indicating that the metal iron acts only by converting protoporphyrin to heme fixed in hemoproteins in Neurospora crassa. Therefore it is suggested that protoporphyrin is the physiological regulator of δ-aminolevulinate dehydratase in Neurospora crassa.
Resumo:
Free proline content in Ragi (Eleusine coracana) leaves increased markedly (6 to 85 fold) as the degree of water stress, created by polyethylene gylcol treatment, was prolonged There was also a marginal increase in soluble proteins in the stressed leaves as compared to that in the controls. Water stress stimulated the activities of ornithine aminotransferase and pyrroline-5-carboxylate reductase, the enzymes of proline biosynthesis and markedly inhibited the enzymes involved in proline degradation viz., proline oxidase and pyrroline-5-carboxylate dehydrogenase. These results suggest that increase in free proline content of Ragi leaves could be due to enhanced activities of the enzymes synthesizing proline but more importantly due to severe inhibition of the enzymes degrading proline. These observations establish for the first time, the pathway of proline metabolism in plants by way of detection of the activities of all the enzymes involved and also highlight the role of these enzymes in proline accumulation during water stress.
Resumo:
The discovery of GH (Glycoside Hydrolase) 19 chitinases in Streptomyces sp. raises the possibility of the presence of these proteins in other bacterial species, since they were initially thought to be confined to higher plants. The present study mainly concentrates on the phylogenetic distribution and homology conservation in GH19 family chitinases. Extensive database searches are performed to identify the presence of GH19 family chitinases in the three major super kingdoms of life. Multiple sequence alignment of all the identified GH19 chitinase family members resulted in the identification of globally conserved residues. We further identified conserved sequence motifs across the major sub groups within the family. Estimation of evolutionary distance between the various bacterial and plant chitinases are carried out to better understand the pattern of evolution. Our study also supports the horizontal gene transfer theory, which states that GH19 chitinase genes are transferred from higher plants to bacteria. Further, the present study sheds light on the phylogenetic distribution and identifies unique sequence signatures that define GH19 chitinase family of proteins. The identified motifs could be used as markers to delineate uncharacterized GH19 family chitinases. The estimation of evolutionary distance between chitinase identified in plants and bacteria shows that the flowering plants are more related to chitinase in actinobacteria than that of identified in purple bacteria. We propose a model to elucidate the natural history of GH19 family chitinases.
Resumo:
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Resumo:
Physical clustering of genes has been shown in plants; however, little is known about gene clusters that have different functions, particularly those expressed in the tomato fruit. A class I 17.6 small heat shock protein (Sl17.6 shsp) gene was cloned and used as a probe to screen a tomato (Solanum lycopersicum) genomic library. An 8.3-kb genomic fragment was isolated and its DNA sequence determined. Analysis of the genomic fragment identified intronless open reading frames of three class I shsp genes (Sl17.6, Sl20.0, and Sl20.1), the Sl17.6 gene flanked by Sl20.1 and Sl20.0, with complete 5' and 3' UTRs. Upstream of the Sl20.0 shsp, and within the shsp gene cluster, resides a box C/D snoRNA cluster made of SlsnoR12.1 and SlU24a. Characteristic C and D, and C' and D', boxes are conserved in SlsnoR12.1 and SlU24a while the upstream flanking region of SlsnoR12.1 carries TATA box 1, homol-E and homol-D box-like cis sequences, TM6 promoter, and an uncharacterized tomato EST. Molecular phylogenetic analysis revealed that this particular arrangement of shsps is conserved in tomato genome but is distinct from other species. The intronless genomic sequence is decorated with cis elements previously shown to be responsive to cues from plant hormones, dehydration, cold, heat, and MYC/MYB and WRKY71 transcription factors. Chromosomal mapping localized the tomato genomic sequence on the short arm of chromosome 6 in the introgression line (IL) 6-3. Quantitative polymerase chain reaction analysis of gene cluster members revealed differential expression during ripening of tomato fruit, and relatively different abundances in other plant parts.