57 resultados para Spatio-temporal variability
Resumo:
We revisit the problem of temporal self organization using activity diffusion based on the neural gas (NGAS) algorithm. Using a potential function formulation motivated by a spatio-temporal metric, we derive an adaptation rule for dynamic vector quantization of data. Simulations results show that our algorithm learns the input distribution and time correlation much faster compared to the static neural gas method over the same data sequence under similar training conditions.
Resumo:
A hydrological modelling framework was assembled to simulate the daily discharge of the Mandovi River on the Indian west coast. Approximately 90% of the west-coast rainfall, and therefore discharge, occurs during the summer monsoon (June-September), with a peak during July-August. The modelling framework consisted of a digital elevation model (DEM) called GLOBE, a hydrological routing algorithm, the Terrestrial Hydrological Model with Biogeochemistry (THMB), an algorithm to map the rainfall recorded by sparse rain-gauges to the model grid, and a modified Soil Conservation Service Curve Number (SCS-CN) method. A series of discharge simulations (with and without the SCS method) was carried out. The best simulation was obtained after incorporating spatio-temporal variability in the SCS parameters, which was achieved by an objective division of the season into five regimes: the lean season, monsoon onset, peak monsoon, end-monsoon, and post-monsoon. A novel attempt was made to incorporate objectively the different regimes encountered before, during and after the Indian monsoon, into a hydrological modelling framework. The strength of our method lies in the low demand it makes on hydrological data. Apart from information on the average soil type in a region, the entire parameterization is built on the basis of the rainfall that is used to force the model. That the model does not need to be calibrated separately for each river is important, because most of the Indian west-coast basins are ungauged. Hence, even though the model has been validated only for the Mandovi basin, its potential region of application is considerable. In the context of the Prediction in Ungauged Basins (PUB) framework, the potential of the proposed approach is significant, because the discharge of these (ungauged) rivers into the eastern Arabian Sea is not small, making them an important element of the local climate system.
Resumo:
Extensive, and collocated measurements of the mass concentrations (M-B) of aerosol black carbon (BC) and (M-T) of composite aerosols were made over the Arabian Sea, tropical Indian Ocean and the Southern Ocean during a trans-continental cruise experiment. Our investigations show that MB remains extremely low(<50 ng m(-3)) and remarkably steady (in space and time) in the Southern Ocean (20 degrees S to 56 degrees S). In contrast, large latitudinal gradients exist north of similar to 20 degrees S; M-B increasing exponentially to reach as high as 2000 ng m(-3) in the Arabian Sea (similar to 8 degrees N). Interestingly, the share of BC showed a distinctly different latitudinal variation, with a peak close to the equator and decreasing on either side. Large fluctuations were seen in M-T over Southern Ocean associated with enhanced production of sea-salt aerosols in response to sea-surface wind speed. These spatio-temporal changes in M-B and its mixing ratio have important implications to regional and global climate.
Resumo:
Coastal lagoons are complex ecosystems exhibiting a high degree of non-linearity in the distribution and exchange of nutrients dissolved in the water column due to their spatio-temporal characteristics. This factor has a direct influence on the concentrations of chlorophyll-a, an indicator of the primary productivity in the water bodies as lakes and lagoons. Moreover the seasonal variability in the characteristics of large-scale basins further contributes to the uncertainties in the data on the physico-chemical and biological characteristics of the lagoons. Considering the above, modelling the distributions of the nutrients with respect to the chlorophyll-concentrations, hence requires an effective approach which will appropriately account for the non-linearity of the ecosystem as well as the uncertainties in the available data. In the present investigation, fuzzy logic was used to develop a new model of the primary production for Pulicat lagoon, Southeast coast of India. Multiple regression analysis revealed that the concentrations of chlorophyll-a in the lagoon was highly influenced by the dissolved concentrations of nitrate, nitrites and phosphorous to different extents over different seasons and years. A high degree of agreement was obtained between the actual field values and those predicted by the new fuzzy model (d = 0.881 to 0.788) for the years 2005 and 2006, illustrating the efficiency of the model in predicting the values of chlorophyll-a in the lagoon.
Resumo:
Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this paper, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets. This is a surprising result since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier.
Resumo:
Concern over changes in global climate has increased in recent years with improvement in understanding of atmospheric dynamics and growth in evidence of climate link to long‐term variability in hydrologic records. Climate impact studies rely on climate change information at fine spatial resolution. Towards this, the past decade has witnessed significant progress in development of downscaling models to cascade the climate information provided by General Circulation Models (GCMs) at coarse spatial resolution to the scale relevant for hydrologic studies. While a plethora of downscaling models have been applied successfully to mid‐latitude regions, a few studies are available on tropical regions where the atmosphere is known to have more complex behavior. In this paper, a support vector machine (SVM) approach is proposed for statistical downscaling to interpret climate change signals provided by GCMs over tropical regions of India. Climate variables affecting spatio‐temporal variation of precipitation at each meteorological sub‐division of India are identified. Following this, cluster analysis is applied on climate data to identify the wet and dry seasons in each year. The data pertaining to climate variables and precipitation of each meteorological sub‐division is then used to develop SVM based downscaling model for each season. Subsequently, the SVM based downscaling model is applied to future climate predictions from the second generation Coupled Global Climate Model (CGCM2) to assess the impact of climate change on hydrological inputs to the meteorological sub‐divisions. The results obtained from the SVM downscaling model are then analyzed to assess the impact of climate change on precipitation over India.
Resumo:
Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this article, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics that suggests such a restricted use of the freeze operator. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets by proposing a symbolic representation of models. This is a quite surprising result in view of the expressive power of the logic since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier. The article also contains developments about the relationships between temporal logics with the freeze operator and counter automata as well as reductions into first-order logics over data words.
Resumo:
The gross characteristics of spatio-temporal current evolution in the return stroke phase of a cloud-to-ground lightning are rather well defined. However, they by themselves do not ensure the salient features for the resulting remote Electro- Magnetic Fields (EMFs). In spite of significant efforts in the engineering models wherein, the spatio-temporal current distribution all along the channel is specified by the design, all the salient features of remote EMFs could not be achieved. Only the current evolution that ensures the basic characteristics along with its ability to reproduce all the salient features of remote EMFs ranging from 50 m – 200 km from the lightning channel, can be considered as a realistic return stroke channel current. In view of this, the present work intends to investigate on the required fine features of the return stroke current evolution that yields all the desired features. To ensure that the current evolution is not arbitrary but obeys the involved basic physical processes, a recently developed physical model will be employed for the analysis.
Resumo:
Daily rainfall datasets of 10 years (1998-2007) of Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) version 6 and India Meteorological Department (IMD) gridded rain gauge have been compared over the Indian landmass, both in large and small spatial scales. On the larger spatial scale, the pattern correlation between the two datasets on daily scales during individual years of the study period is ranging from 0.4 to 0.7. The correlation improved significantly (similar to 0.9) when the study was confined to specific wet and dry spells each of about 5-8 days. Wavelet analysis of intraseasonal oscillations (ISO) of the southwest monsoon rainfall show the percentage contribution of the major two modes (30-50 days and 10-20 days), to be ranging respectively between similar to 30-40% and 5-10% for the various years. Analysis of inter-annual variability shows the satellite data to be underestimating seasonal rainfall by similar to 110 mm during southwest monsoon and overestimating by similar to 150 mm during northeast monsoon season. At high spatio-temporal scales, viz., 1 degrees x1 degrees grid, TMPA data do not correspond to ground truth. We have proposed here a new analysis procedure to assess the minimum spatial scale at which the two datasets are compatible with each other. This has been done by studying the contribution to total seasonal rainfall from different rainfall rate windows (at 1 mm intervals) on different spatial scales (at daily time scale). The compatibility spatial scale is seen to be beyond 5 degrees x5 degrees average spatial scale over the Indian landmass. This will help to decide the usability of TMPA products, if averaged at appropriate spatial scales, for specific process studies, e.g., cloud scale, meso scale or synoptic scale.
Resumo:
Aerosol black carbon (BC) mass concentrations ([BC]), measured continuously during a multi-platform field experiment, Integrated Campaign for Aerosols gases and Radiation Budget (ICARB, March-May 2006), from a network of eight observatories spread over geographically distinct environments of India, (which included five mainland stations, one highland station, and two island stations (one each ill Arabian Sea and Bay of Bengal)) are examined for their spatio-temporal characteristics. During the period of study, [BC] showed large variations across the country, with values ranging from 27 mu g m(3) over industrial/urban locations to as low as 0.065 mu g m(-3) over the Arabian Sea. For all mainland stations, [BC] remained high compared to highland as well as island stations. Among the island stations, Port Blair (PBR) had higher concentration of BC, compared to Minicoy (MCY), implying more absorbing nature of Bay of Bengal aerosols than Arabian Sea. The highland station Nainital (NTL), in the central Himalayas, showed low values of [BC], comparable or even lower than that of the island station PBR, indicating the prevalence of cleaner environment over there. An examination of the changes in the mean temporal features, as the season advances from winter (December-February) to pre-monsoon (March-May), revealed that: (a) Diurnal variations were pronounced over all the mainland stations, with all afternoon low and a nighttime high: (b) At the islands, the diurnal variations, though resembled those over the mainlands, were less pronounced; and (c) In contrast to this, highland station showed an opposite pattern with an afternoon high and a late night or early morning low. The diurnal variations at all stations are mainly caused by the dynamics of local Atmospheric Boundary Layer (ABL), At the entire mainland as well as island stations (except HYD and DEL), [BC] showed a decreasing trend from January to May, This is attributed to the increased convective mixing and to the resulting enhanced vertical dispersal of species in the ABL. In addition, large short-period modulations were observed at DEL and HYD, which appeared to be episodic, An examination of this in the light of the MODIS-derived fire count data over India along with the back-trajectory analysis revealed that advection of BC from extensive forest fires and biomass-burning regions upwind were largely responsible for this episodic enhancement in BC at HYD and DEL.
Resumo:
Chemical composition of rainwater changes from sea to inland under the influence of several major factors - topographic location of area, its distance from sea, annual rainfall. A model is developed here to quantify the variation in precipitation chemistry under the influence of inland distance and rainfall amount. Various sites in India categorized as 'urban', 'suburban' and 'rural' have been considered for model development. pH, HCO3, NO3 and Mg do not change much from coast to inland while, SO4 and Ca change is subjected to local emissions. Cl and Na originate solely from sea salinity and are the chemistry parameters in the model. Non-linear multiple regressions performed for the various categories revealed that both rainfall amount and precipitation chemistry obeyed a power law reduction with distance from sea. Cl and Na decrease rapidly for the first 100 km distance from sea, then decrease marginally for the next 100 km, and later stabilize. Regression parameters estimated for different cases were found to be consistent (R-2 similar to 0.8). Variation in one of the parameters accounted for urbanization. Model was validated using data points from the southern peninsular region of the country. Estimates are found to be within 99.9% confidence interval. Finally, this relationship between the three parameters - rainfall amount, coastline distance, and concentration (in terms of Cl and Na) was validated with experiments conducted in a small experimental watershed in the south-west India. Chemistry estimated using the model was in good correlation with observed values with a relative error of similar to 5%. Monthly variation in the chemistry is predicted from a downscaling model and then compared with the observed data. Hence, the model developed for rain chemistry is useful in estimating the concentrations at different spatio-temporal scales and is especially applicable for south-west region of India. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
With the availability of a huge amount of video data on various sources, efficient video retrieval tools are increasingly in demand. Video being a multi-modal data, the perceptions of ``relevance'' between the user provided query video (in case of Query-By-Example type of video search) and retrieved video clips are subjective in nature. We present an efficient video retrieval method that takes user's feedback on the relevance of retrieved videos and iteratively reformulates the input query feature vectors (QFV) for improved video retrieval. The QFV reformulation is done by a simple, but powerful feature weight optimization method based on Simultaneous Perturbation Stochastic Approximation (SPSA) technique. A video retrieval system with video indexing, searching and relevance feedback (RF) phases is built for demonstrating the performance of the proposed method. The query and database videos are indexed using the conventional video features like color, texture, etc. However, we use the comprehensive and novel methods of feature representations, and a spatio-temporal distance measure to retrieve the top M videos that are similar to the query. In feedback phase, the user activated iterative on the previously retrieved videos is used to reformulate the QFV weights (measure of importance) that reflect the user's preference, automatically. It is our observation that a few iterations of such feedback are generally sufficient for retrieving the desired video clips. The novel application of SPSA based RF for user-oriented feature weights optimization makes the proposed method to be distinct from the existing ones. The experimental results show that the proposed RF based video retrieval exhibit good performance.
Resumo:
Low-molecular-mass organogelators (LMOGs) based on photochromic molecules aggregate in selected solvents to form gels through various spatio-temporal interactions. The factors that control the mode of aggregation of the chromophoric core in the LMOGs during gelation, gelation-induced changes in fluorescence, the formation of stacked superstructures of extended pi-conjugated systems, and so forth are discussed with selected examples. Possible ways of generating various light-harvesting assemblies are proposed, and some unresolved questions, future challenges, and their possible solutions on this topic are presented.
Resumo:
In mammals including humans, failure in blastocyst hatching and implantation leads to early embryonic loss and infertility. Prior to implantation, the blastocyst must hatch out of its acellular glycoprotein coat, the zona pellucida (ZP). The phenomenon of blastocyst hatching is believed to be regulated by (i) dynamic cellular components such as actin-based trophectodermal projections (TEPs), and (ii) a variety of autocrine and paracrine molecules such as growth factors, cytokines and proteases. The spatio-temporal regulation of zona lysis by blastocyst-derived cellular and molecular signaling factors is being keenly investigated. Our studies show that hamster blastocyst hatching is acelerated by growth factors such as heparin binding-epidermal growth factor and leukemia inhibitory factor and that embryo-derived, cysteine proteases including cathepsins are responsible for blastocyst hatching. Additionally, we believe that cyclooxygenase-generated prostaglandins, estradiol-17 beta mediated estrogen receptor-alpha signaling and possibly NF kappa B could be involved in peri-hatching development. Moreover, we show that TEPs are intimately involved with lysing ZP and that the TEPs potentially enrich and harbor hatching-enabling factors. These observations provide new insights into our understanding of the key cellular and molecular regulators involved in the phenomenon of mammalian blastocyst hatching, which is essential for the establishment of early pregnancy.
Resumo:
The influence of atmospheric aerosols on Earth's radiation budget and hence climate, though well recognized and extensively investigated in recent years, remains largely uncertain mainly because of the large spatio-temporal heterogeneity and the lack of data with adequate resolution. To characterize this diversity, a major multi-platform field campaign ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out during the pre-monsoon period of 2006 over the Indian landmass and surrounding oceans, which was the biggest such campaign ever conducted over this region. Based on the extensive and concurrent measurements of the optical and physical properties of atmospheric aerosols during ICARB, the spatial distribution of aerosol radiative forcing was estimated over the entire Bay of Bengal (BoB), northern Indian Ocean and Arabian Sea (AS) as well as large spatial variations within these regions. Besides being considerably lower than the mean values reported earlier for this region, our studies have revealed large differences in the forcing components between the BoB and the AS. While the regionally averaged aerosol-induced atmospheric forcing efficiency was 31 +/- 6 W m(-2) tau(-1) for the BoB, it was only similar to 18 +/- 7 W m(-2) tau(-1) for the AS. Airborne measurements revealed the presence of strong, elevated aerosol layers even over the oceans, leading to vertical structures in the atmospheric forcing, resulting in significant warming in the lower troposphere. These observations suggest serious climate implications and raise issues ranging from the impact of aerosols on vertical thermal structure of the atmospheric and hence cloud formation processes to monsoon circulation.