43 resultados para Spatial variation
Resumo:
The 1D electric field and heat-conduction equations are solved for a slab where the dielectric properties vary spatially in the sample. Series solutions to the electric field are obtained for systems where the spatial variation in the dielectric properties can be expressed as polynomials. The series solution is used to obtain electric-field distributions for a binary oil-water system where the dielectric properties are assumed to vary linearly within the sample. Using the finite-element method temperature distributions are computed in a three-phase oil, water and rock system where the dielectric properties vary due to the changing oil saturation in the rock. Temperature distributions predicted using a linear variation in the dielectric properties are compared with those obtained using the exact nonlinear variation.
Resumo:
The production of rainfed crops in semi-arid tropics exhibits large variation in response to the variation in seasonal rainfall. There are several farm-level decisions such as the choice of cropping pattern, whether to invest in fertilizers, pesticides etc., the choice of the period for planting, plant population density etc. for which the appropriate choice (associated with maximum production or minimum risk) depends upon the nature of the rainfall variability or the prediction for a specific year. In this paper, we have addressed the problem of identifying the appropriate strategies for cultivation of rainfed groundnut in the Anantapur region in a semi-arid part of the Indian peninsula. The approach developed involves participatory research with active collaboration with farmers, so that the problems with perceived need are addressed with the modern tools and data sets available. Given the large spatial variation of climate and soil, the appropriate strategies are necessarily location specific. With the approach adopted, it is possible to tap the detailed location specific knowledge of the complex rainfed ecosystem and gain an insight into the variety of options of land use and management practices available to each category of stakeholders. We believe such a participatory approach is essential for identifying strategies that have a favourable cost-benefit ratio over the region considered and hence are associated with a high chance of acceptance by the stakeholders. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We measure the non-axisymmetry in the luminosity distribution in the central few kpc of a sample of advanced mergers of galaxies, by analyzing their 2MASS images. All mergers show a high central asymmetry: the centres of isophotes show a striking sloshing pattern with a spatial variation of upto 30% within the central 1 kpc; and the Fourier amplitude for lopsidedness (m = 1) shows high values upto 0.2 within the central 5 kpc. The central asymmetry is estimated to be long-lived, lasting for ~ a few Gyr or ~ 100 local dynamical timescales. This will significantly affect the dynamical evolution of this region, by helping fuel the central active galactic nucleus, and also by causing the secular growth of the bulge driven by lopsidedness.
Resumo:
New compos~tiong radient solid electrolytes are developed which have application in high temperature solid state galvanic sensors and provide a new tool for thermodynamic measurements. The electrolyte consists oi a solid solution between two ionic conductors with a common mobile ion and spatial variation in composition of otber coxup nents. Incorporation of the composite electrolyte in sensors permits the use oi dissimilar gas electrodes. It is demonsuated, both experimentall y and theoretically, that the composition gradient of the relativeiy immobile species does not give rise to a diffusion potential.The emi of a cell is determined by the activity of the mobile species at the two eiectrodes. The thermodynamic properties of solid solutions can be measured using the gradient solid electrolyte. The experimental stuay is based on model systems A?(COj)x(S04)l-x (A=Na,K),where S \.aria across the electrolyte. The functionally gradient solid electrolytes used for activity measurements consist of pure carbonate at one ena and the solid solution under stuav at the other. The identical vaiues of activity, obtained h m t hree different modes of operation of the ceil. indicate unit transport number for the ddi metal ion in the graciient electrolyte. Tlle activities in the solid solutions exhibit moderate positive deviations from Raoult 's law.
Resumo:
In the present study, a new turbulent premixed combustion model is proposed by integrating the Coherent Flame Model with the modified eddy dissipation concept, and relating the fine structure mass fraction to the flame surface density. First, experimental results of turbulent flame speed available from literature are compared with the predicted results at different turbulence intensities to validate the flame surface density model. It is observed that the model is able to predict the turbulent burning speeds accurately. Then, a comprehensive validation is carried out utilizing data on a turbulent lifted methane flame issuing into a vitiated co-flow. Detailed comparison of temperature and species concentrations between experiment and simulation is performed at different heights of the flame. Overall, the model is found to predict both the spatial variation and peak values of the scalars at various heights satisfactorily.
Resumo:
This paper presents a detailed study on the seismic pattern of the state of Karnataka and also quantifies the seismic hazard for the entire state. In the present work, historical and instrumental seismicity data for Karnataka (within 300 km from Karnataka political boundary) were compiled and hazard analysis was done based on this data. Geographically, Karnataka forms a part of peninsular India which is tectonically identified as an intraplate region of Indian plate. Due to the convergent movement of the Indian plate with the Eurasian plate, movements are occurring along major intraplate faults resulting in seismic activity of the region and hence the hazard assessment of this region is very important. Apart from referring to seismotectonic atlas for identifying faults and fractures, major lineaments in the study area were also mapped using satellite data. The earthquake events reported by various national and international agencies were collected until 2009. Declustering of earthquake events was done to remove foreshocks and aftershocks. Seismic hazard analysis was done for the state of Karnataka using both deterministic and probabilistic approaches incorporating logic tree methodology. The peak ground acceleration (PGA) at rock level was evaluated for the entire state considering a grid size of 0.05A degrees x 0.05A degrees. The attenuation relations proposed for stable continental shield region were used in evaluating the seismic hazard with appropriate weightage factors. Response spectra at rock level for important Tier II cities and Bangalore were evaluated. The contour maps showing the spatial variation of PGA values at bedrock are presented in this work.
Resumo:
Earthquakes are known to have occurred in Indian subcontinent from ancient times. This paper presents the results of seismic hazard analysis of India (6 degrees-38 degrees N and 68 degrees-98 degrees E) based on the deterministic approach using latest seismicity data (up to 2010). The hazard analysis was done using two different source models (linear sources and point sources) and 12 well recognized attenuation relations considering varied tectonic provinces in the region. The earthquake data obtained from different sources were homogenized and declustered and a total of 27,146 earthquakes of moment magnitude 4 and above were listed in the study area. The sesismotectonic map of the study area was prepared by considering the faults, lineaments and the shear zones which are associated with earthquakes of magnitude 4 and above. A new program was developed in MATLAB for smoothing of the point sources. For assessing the seismic hazard, the study area was divided into small grids of size 0.1 degrees x 0.1 degrees (approximately 10 x 10 km), and the hazard parameters were calculated at the center of each of these grid cells by considering all the seismic sources within a radius of 300 to 400 km. Rock level peak horizontal acceleration (PHA) and spectral accelerations for periods 0.1 and 1 s have been calculated for all the grid points with a deterministic approach using a code written in MATLAB. Epistemic uncertainty in hazard definition has been tackled within a logic-tree framework considering two types of sources and three attenuation models for each grid point. The hazard evaluation without logic tree approach also has been done for comparison of the results. The contour maps showing the spatial variation of hazard values are presented in the paper.
Resumo:
This paper deals with an experimental study of the breakup characteristics of water emanating from hollow cone hydraulic injector nozzles induced by pressure-swirling. The experiments were conducted using two nozzles with different orifice diameters 0.3 mm and 0.5 mm and injection pressures (0.3-4 MPa) which correspond to Rep = 7000-26 000. Two types of laser diagnostic techniques were utilized: shadowgraph and phase Doppler particle anemometry for a complete study of the atomization process. Measurements that were made in the spray in both axial and radial directions indicate that both velocity and average droplet diameter profiles are highly dependent on the nozzle characteristics, Weber number and Reynolds number. The spatial variation of diameter and velocity arises principally due to primary breakup of liquid films and subsequent secondary breakup of large droplets due to aerodynamic shear. Downstream of the nozzle, coalescence of droplets due to collision was also found to be significant. Different types of liquid film breakup were considered and found to match well with the theory. Secondary breakup due to shear was also studied theoretically and compared to the experimental data. Coalescence probability at different axial and radial locations was computed to explain the experimental results. The spray is subdivided into three zones: near the nozzle, a zone consisting of film and ligament regime, where primary breakup and some secondary breakup take place; a second zone where the secondary breakup process continues, but weakens, and the centrifugal dispersion becomes dominant; and a third zone away from the spray where coalescence is dominant. Each regime has been analyzed in detail, characterized by timescale and Weber number and validated using experimental data. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.4773065]
Resumo:
In view of the major advancement made in understanding the seismicity and seismotectonics of the Indian region in recent times, an updated probabilistic seismic hazard map of India covering 6-38 degrees N and 68-98 degrees E is prepared. This paper presents the results of probabilistic seismic hazard analysis of India done using regional seismic source zones and four well recognized attenuation relations considering varied tectonic provinces in the region. The study area was divided into small grids of size 0.1 degrees x 0.1 degrees. Peak Horizontal Acceleration (PHA) and spectral accelerations for periods 0.1 s and 1 s have been estimated and contour maps showing the spatial variation of the same are presented in the paper. The present study shows that the seismic hazard is moderate in peninsular shield, but the hazard in most parts of North and Northeast India is high. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The delineation of seismic source zones plays an important role in the evaluation of seismic hazard. In most of the studies the seismic source delineation is done based on geological features. In the present study, an attempt has been made to delineate seismic source zones in the study area (south India) based on the seismicity parameters. Seismicity parameters and the maximum probable earthquake for these source zones were evaluated and were used in the hazard evaluation. The probabilistic evaluation of seismic hazard for south India was carried out using a logic tree approach. Two different types of seismic sources, linear and areal, were considered in the present study to model the seismic sources in the region more precisely. In order to properly account for the attenuation characteristics of the region, three different attenuation relations were used with different weightage factors. Seismic hazard evaluation was done for the probability of exceedance (PE) of 10% and 2% in 50 years. The spatial variation of rock level peak horizontal acceleration (PHA) and spectral acceleration (Sa) values corresponding to return periods of 475 and 2500 years for the entire study area are presented in this work. The peak ground acceleration (PGA) values at ground surface level were estimated based on different NEHRP site classes by considering local site effects.
Resumo:
We use the Bouguer coherence (Morlet isostatic response function) technique to compute the spatial variation of effective elastic thickness (T-e) of the Andaman subduction zone. The recovered T-e map resolves regional-scale features that correlate well with known surface structures of the subducting Indian plate and the overriding Burma plate. The major structure on the India plate, the Ninetyeast Ridge (NER), exhibits a weak mechanical strength, which is consistent with the expected signature of an oceanic ridge of hotspot origin. However, a markedly low strength (0< T-e <3 km) in that region, where the NER is close to the Andaman trench (north of 10 N), receives our main attention in this study. The subduction geometry derived from the Bouguer gravity forward modeling suggests that the NER has indented beneath the Andaman arc. We infer that the bending stresses of the viscous plate, which were reinforced within the subducting oceanic plate as a result of the partial subduction of the NER buoyant load, have reduced the lithospheric strength. The correlation, T-e < T-s (seismogenic thickness) reveals that the upper crust is actively deforming beneath the frontal arc Andaman region. The occurrence of normal-fault earthquakes in the frontal arc, low Te zone, is indicative of structural heterogeneities within the subducting plate. The fact that the NER along with its buoyant root is subducting under the Andaman region is inhibiting the subduction processes, as suggested by the changes in trench line, interrupted back-arc volcanism, variation in seismicity mechanism, slow subduction, etc. The low T-e and thinned crustal structure of the Andaman back-arc basin are attributed to a thermomechanically weakened lithosphere. The present study reveals that the ongoing back-arc spreading and strike-slip motion along the West Andaman Fault coupled with the ridge subduction exerts an important control on the frequency and magnitude of seismicity in the Andaman region. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Drastic groundwater resource depletion due to excessive extraction for irrigation is a major concern in many parts of India. In this study, an attempt was made to simulate the groundwater scenario of the catchment using ArcSWAT. Due to the restriction on the maximum initial storage, the deep aquifer component in ArcSWAT was found to be insufficient to represent the excessive groundwater depletion scenario. Hence, a separate water balance model was used for simulating the deep aquifer water table. This approach is demonstrated through a case study for the Malaprabha catchment in India. Multi-site rainfall data was used to represent the spatial variation in the catchment climatology. Model parameters were calibrated using observed monthly stream flow data. Groundwater table simulation was validated using the qualitative information available from the field. The stream flow was found to be well simulated in the model. The simulated groundwater table fluctuation is also matching reasonably well with the field observations. From the model simulations, deep aquifer water table fluctuation was found very severe in the semi-arid lower parts of the catchment, with some areas showing around 60m depletion over a period of eight years. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
Since Brutsaert and Neiber (1977), recession curves are widely used to analyse subsurface systems of river basins by expressing -dQ/dt as a function of Q, which typically take a power law form: -dQ/dt=kQ, where Q is the discharge at a basin outlet at time t. Traditionally recession flows are modelled by single reservoir models that assume a unique relationship between -dQ/dt and Q for a basin. However, recent observations indicate that -dQ/dt-Q relationship of a basin varies greatly across recession events, indicating the limitation of such models. In this study, the dynamic relationship between -dQ/dt and Q of a basin is investigated through the geomorphological recession flow model which models recession flows by considering the temporal evolution of its active drainage network (the part of the stream network of the basin draining water at time t). Two primary factors responsible for the dynamic relationship are identified: (i) degree of aquifer recharge (ii) spatial variation of rainfall. Degree of aquifer recharge, which is likely to be controlled by (effective) rainfall patterns, influences the power law coefficient, k. It is found that k has correlation with past average streamflow, which confirms the notion that dynamic -dQ/dt-Q relationship is caused by the degree of aquifer recharge. Spatial variation of rainfall is found to have control on both the exponent, , and the power law coefficient, k. It is noticed that that even with same and k, recession curves can be different, possibly due to their different (recession) peak values. This may also happen due to spatial variation of rainfall. Copyright (c) 2012 John Wiley & Sons, Ltd.
Resumo:
In the present study an analytical model has been presented to describe the transient temperature distribution and advancement of the thermal front generated due to the reinjection of heat depleted water in a heterogeneous geothermal reservoir. One dimensional heat transport equation in porous media with advection and longitudinal heat conduction has been solved analytically using Laplace transform technique in a semi infinite medium. The heterogeneity of the porous medium is expressed by the spatial variation of the flow velocity and the longitudinal effective thermal conductivity of the medium. A simpler solution is also derived afterwards neglecting the longitudinal conduction depending on the situation where the contribution to the transient heat transport phenomenon in the porous media is negligible. Solution for a homogeneous aquifer with constant values of the rock and fluid parameters is also derived with an aim to compare the results with that of the heterogeneous one. The effect of some of the parameters involved, on the transient heat transport phenomenon is assessed by observing the variation of the results with different magnitudes of those parameters. Results prove the heterogeneity of the medium, the flow velocity and the longitudinal conductivity to have great influence and porosity to have negligible effect on the transient temperature distribution. (C) 2013 Elsevier Inc. All rights reserved.
Resumo:
This paper highlights the seismic microzonation carried out for a nuclear power plant site. Nuclear power plants are considered to be one of the most important and critical structures designed to withstand all natural disasters. Seismic microzonation is a process of demarcating a region into individual areas having different levels of various seismic hazards. This will help in identifying regions having high seismic hazard which is vital for engineering design and land-use planning. The main objective of this paper is to carry out the seismic microzonation of a nuclear power plant site situated in the east coast of South India, based on the spatial distribution of the hazard index value. The hazard index represents the consolidated effect of all major earthquake hazards and hazard influencing parameters. The present work will provide new directions for assessing the seismic hazards of new power plant sites in the country. Major seismic hazards considered for the evaluation of the hazard index are (1) intensity of ground shaking at bedrock, (2) site amplification, (3) liquefaction potential and (4) the predominant frequency of the earthquake motion at the surface. The intensity of ground shaking in terms of peak horizontal acceleration (PHA) was estimated for the study area using both deterministic and probabilistic approaches with logic tree methodology. The site characterization of the study area has been carried out using the multichannel analysis of surface waves test and available borehole data. One-dimensional ground response analysis was carried out at major locations within the study area for evaluating PHA and spectral accelerations at the ground surface. Based on the standard penetration test data, deterministic as well as probabilistic liquefaction hazard analysis has been carried out for the entire study area. Finally, all the major earthquake hazards estimated above, and other significant parameters representing local geology were integrated using the analytic hierarchy process and hazard index map for the study area was prepared. Maps showing the spatial variation of seismic hazards (intensity of ground shaking, liquefaction potential and predominant frequency) and hazard index are presented in this work.