123 resultados para Spatial Chaos


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grain misorientation was studied in relation to the nearest neighbor's mutual distance using electron back-scattered diffraction measurements. The misorientation correlation function was defined as the probability density for the occurrence of a certain misorientation between pairs of grains separated by a certain distance. Scale-invariant spatial correlation between neighbor grains was manifested by a power law dependence of the preferred misorientation vs. inter-granular distance in various materials after diverse strain paths. The obtained negative scaling exponents were in the range of -2 +/- 0.3 for high-angle grain boundaries. The exponent decreased in the presence of low-angle grain boundaries or dynamic recrystallization, indicating faster decay of correlations. The correlations vanished in annealed materials. The results were interpreted in terms of lattice incompatibility and continuity conditions at the interface between neighboring grains. Grain-size effects on texture development, as well as the implications of such spatial correlations on texture modeling, were discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this article, we propose a denoising algorithm to denoise a time series y(i) = x(i) + e(i), where {x(i)} is a time series obtained from a time- T map of a uniformly hyperbolic or Anosov flow, and {e(i)} a uniformly bounded sequence of independent and identically distributed (i.i.d.) random variables. Making use of observations up to time n, we create an estimate of x(i) for i<n. We show under typical limiting behaviours of the orbit and the recurrence properties of x(i), the estimation error converges to zero as n tends to infinity with probability 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The accretion disk around a compact object is a nonlinear general relativistic system involving magnetohydrodynamics. Naturally, the question arises whether such a system is chaotic (deterministic) or stochastic (random) which might be related to the associated transport properties whose origin is still not confirmed. Earlier, the black hole system GRS 1915+105 was shown to be low-dimensional chaos in certain temporal classes. However, so far such nonlinear phenomena have not been studied fairly well for neutron stars which are unique for their magnetosphere and kHz quasi-periodic oscillation (QPO). On the other hand, it was argued that the QPO is a result of nonlinear magnetohydrodynamic effects in accretion disks. If a neutron star exhibits chaotic signature, then what is the chaotic/correlation dimension? We analyze RXTE/PCA data of neutron stars Sco X-1 and Cyg X-2, along with the black hole Cyg X-1 and the unknown source Cyg X-3, and show that while Sco X-1 and Cyg X-2 are low dimensional chaotic systems, Cyg X-1 and Cyg X-3 are stochastic sources. Based on our analysis, we argue that Cyg X-3 may be a black hole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influence of atmospheric aerosols on Earth's radiation budget and hence climate, though well recognized and extensively investigated in recent years, remains largely uncertain mainly because of the large spatio-temporal heterogeneity and the lack of data with adequate resolution. To characterize this diversity, a major multi-platform field campaign ICARB (Integrated Campaign for Aerosols, gases and Radiation Budget) was carried out during the pre-monsoon period of 2006 over the Indian landmass and surrounding oceans, which was the biggest such campaign ever conducted over this region. Based on the extensive and concurrent measurements of the optical and physical properties of atmospheric aerosols during ICARB, the spatial distribution of aerosol radiative forcing was estimated over the entire Bay of Bengal (BoB), northern Indian Ocean and Arabian Sea (AS) as well as large spatial variations within these regions. Besides being considerably lower than the mean values reported earlier for this region, our studies have revealed large differences in the forcing components between the BoB and the AS. While the regionally averaged aerosol-induced atmospheric forcing efficiency was 31 +/- 6 W m(-2) tau(-1) for the BoB, it was only similar to 18 +/- 7 W m(-2) tau(-1) for the AS. Airborne measurements revealed the presence of strong, elevated aerosol layers even over the oceans, leading to vertical structures in the atmospheric forcing, resulting in significant warming in the lower troposphere. These observations suggest serious climate implications and raise issues ranging from the impact of aerosols on vertical thermal structure of the atmospheric and hence cloud formation processes to monsoon circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, spatial variability modeling of soil parameters using random field theory has gained distinct importance in geotechnical analysis. In the present Study, commercially available finite difference numerical code FLAC 5.0 is used for modeling the permeability parameter as spatially correlated log-normally distributed random variable and its influence on the steady state seepage flow and on the slope stability analysis are studied. Considering the case of a 5.0 m high cohesive-frictional soil slope of 30 degrees, a range of coefficients of variation (CoV%) from 60 to 90% in the permeability Values, and taking different values of correlation distance in the range of 0.5-15 m, parametric studies, using Monte Carlo simulations, are performed to study the following three aspects, i.e., (i) effect ostochastic soil permeability on the statistics of seepage flow in comparison to the analytic (Dupuit's) solution available for the uniformly constant permeability property; (ii) strain and deformation pattern, and (iii) stability of the given slope assessed in terms of factor of safety (FS). The results obtained in this study are useful to understand the role of permeability variations in slope stability analysis under different slope conditions and material properties. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Visual tracking has been a challenging problem in computer vision over the decades. The applications of Visual Tracking are far-reaching, ranging from surveillance and monitoring to smart rooms. Mean-shift (MS) tracker, which gained more attention recently, is known for tracking objects in a cluttered environment and its low computational complexity. The major problem encountered in histogram-based MS is its inability to track rapidly moving objects. In order to track fast moving objects, we propose a new robust mean-shift tracker that uses both spatial similarity measure and color histogram-based similarity measure. The inability of MS tracker to handle large displacements is circumvented by the spatial similarity-based tracking module, which lacks robustness to object's appearance change. The performance of the proposed tracker is better than the individual trackers for tracking fast-moving objects with better accuracy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In prediction phase, the hierarchical tree structure obtained from the test image is used to predict every central pixel of an image by its four neighboring pixels. The prediction scheme generates the predicted error image, to which the wavelet/sub-band coding algorithm can be applied to obtain efficient compression. In quantization phase, we used a modified SPIHT algorithm to achieve efficiency in memory requirements. The memory constraint plays a vital role in wireless and bandwidth-limited applications. A single reusable list is used instead of three continuously growing linked lists as in case of SPIHT. This method is error resilient. The performance is measured in terms of PSNR and memory requirements. The algorithm shows good compression performance and significant savings in memory. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The significance of treating rainfall as a chaotic system instead of a stochastic system for a better understanding of the underlying dynamics has been taken up by various studies recently. However, an important limitation of all these approaches is the dependence on a single method for identifying the chaotic nature and the parameters involved. Many of these approaches aim at only analyzing the chaotic nature and not its prediction. In the present study, an attempt is made to identify chaos using various techniques and prediction is also done by generating ensembles in order to quantify the uncertainty involved. Daily rainfall data of three regions with contrasting characteristics (mainly in the spatial area covered), Malaprabha, Mahanadi and All-India for the period 1955-2000 are used for the study. Auto-correlation and mutual information methods are used to determine the delay time for the phase space reconstruction. Optimum embedding dimension is determined using correlation dimension, false nearest neighbour algorithm and also nonlinear prediction methods. The low embedding dimensions obtained from these methods indicate the existence of low dimensional chaos in the three rainfall series. Correlation dimension method is done on th phase randomized and first derivative of the data series to check whether the saturation of the dimension is due to the inherent linear correlation structure or due to low dimensional dynamics. Positive Lyapunov exponents obtained prove the exponential divergence of the trajectories and hence the unpredictability. Surrogate data test is also done to further confirm the nonlinear structure of the rainfall series. A range of plausible parameters is used for generating an ensemble of predictions of rainfall for each year separately for the period 1996-2000 using the data till the preceding year. For analyzing the sensitiveness to initial conditions, predictions are done from two different months in a year viz., from the beginning of January and June. The reasonably good predictions obtained indicate the efficiency of the nonlinear prediction method for predicting the rainfall series. Also, the rank probability skill score and the rank histograms show that the ensembles generated are reliable with a good spread and skill. A comparison of results of the three regions indicates that although they are chaotic in nature, the spatial averaging over a large area can increase the dimension and improve the predictability, thus destroying the chaotic nature. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plasma membranes regulate the influx and efflux of molecules across themselves and are also responsible for primary signal transduction between cells or within the same cell. Presence of lateral heterogeneity and the ability of reorganization are essential requirements for effective functioning of biomembranes. Lipid rafts are small, heterogeneous, dynamic domains enriched in glycosphingolipids, sphingomyelin and cholesterol, and profoundly influence membrane organization. Glycosphingolipids are inclined towards formation of liquid-ordered phases in membranes, both with and without cholesterol; they are therefore prime players in domain formation. Here, we discuss the role of glycosphingolipids in microdomain formation and their spatial organization within these rafts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two algorithms are outlined, each of which has interesting features for modeling of spatial variability of rock depth. In this paper, reduced level of rock at Bangalore, India, is arrived from the 652 boreholes data in the area covering 220 sqa <.km. Support vector machine (SVM) and relevance vector machine (RVM) have been utilized to predict the reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth. The support vector machine (SVM) that is firmly based on the theory of statistical learning theory uses regression technique by introducing epsilon-insensitive loss function has been adopted. RVM is a probabilistic model similar to the widespread SVM, but where the training takes place in a Bayesian framework. Prediction results show the ability of learning machine to build accurate models for spatial variability of rock depth with strong predictive capabilities. The paper also highlights the capability ofRVM over the SVM model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growth of characteristic length scales associated with dynamic heterogeneity in glass-forming liquids is investigated in an extensive computational study of a four-point, time-dependent structure factor defined from spatial correlations of mobility, for a model liquid for system sizes extending up to 351 232 particles, in constant-energy and constant-temperature ensembles. Our estimates for dynamic correlation lengths and susceptibilities are consistent with previous results from finite size scaling. We find scaling exponents that are inconsistent with predictions from inhomogeneous mode coupling theory and a recent simulation confirmation of these predictions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple technique involving the use of a rotating and a stationary diffuser has been developed to vary the spatial coherence of light from a He-Ne laser. Using this technique an experimental investigation of the dependence of rotation sensitivity of Lau fringes on the spatial coherence of the illuminating wavefield has been carried out. It is observed that (i) the rotation sensitivity of Lau fringes varies in a well-defined manner as a function of the spatial coherence of the light used; (ii) the extremely good rotation sensitivity of Lau fringes can be used to great advantage (compared to the conventional double slit method) in the measurement of the spatial coherence of a wavefield; (iii) Lau fringes are formed at various levels of spatial coherence and as such it appears that the Lau effect need not be associated with an incoherent optical field