260 resultados para Solid state reaction method


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of imperfections in thermal polymerization of acrylamide in the solid state was studied. The polymer yield and the degree of polymerization are highly dependent on the particle size and on the pressure to which the monomer is subjected prior to polymerization reaction. There is an enhancement in the rate of polymerization in air unlike in the case of radiation-induced polymerization. Thermal polymerization of acrylamide in pelletized form results in the formation of water-soluble linear polymer and water-insoluble cross-linked product with the evolution of ammonia. The activation energy (E) values obtained in the present investigation reveal that basically there are two processes taking place, one with E = 34–36 kcal/mole, corresponding to the initiation process, and the other with E = 19 ± 3 kcal/more for the propagation process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years there has been an upsurge of interest in the study of organic reactions in the solid state. It is now realised that the crystalline matrix provides an extra-ordinary spatial control on the initiation and progress of these reactions. Electronic and dipolar effects which are important in solution are replaced by structural and geometric effects in solids. These 'spatial' or 'topochemical' aspects are important in understanding the mechanistic details of the reaction. In our laboratory, the thermally induced acyl migration in salicylamides from 0- to N- position in the solid state has been under study (Scheme 1). The structures of the acetyl and benzoyl derivatives (Ia,IIa, Ib and IIb) have been reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A survey of recent developments in preparative solid state chemistry shows that, with a knowledge of structural chemistry and reactivity patterns of solids, it is possible to synthesize a variety of new solids possessing novel structures. A distinction is made between synthesis ofnew solids and synthesis of solids bynew methods. Three new routes to solid state synthesis are recognized: the precursor method, and topochemical methods involving redox and ion-exchange reactions. The low-temperature topochemical methods enable synthesis of metastable phases that are inaccessible by the high temperature route. Several illustrative examples of solid state synthesis from the recent literature are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Separated local field (SLF) spectroscopy is a powerful technique to measure heteronuclear dipolar couplings. The method provides site-specific dipolar couplings for oriented samples such as membrane proteins oriented in lipid bilayers and liquid crystals. A majority of the SLF techniques utilize the well-known Polarization Inversion Spin Exchange at Magic Angle (PISEMA) pulse scheme which employs spin exchange at the magic angle under Hartmann-Hahn match. Though PISEMA provides a relatively large scaling factor for the heteronuclear dipolar coupling and a better resolution along the dipolar dimension, it has a few shortcomings. One of the major problems with PISEMA is that the sequence is very much sensitive to proton carrier offset and the measured dipolar coupling changes dramatically with the change in the carrier frequency. The study presented here focuses on modified PISEMA sequences which are relatively insensitive to proton offsets over a large range. In the proposed sequences, the proton magnetization is cycled through two quadrants while the effective field is cycled through either two or four quadrants. The modified sequences have been named as 2(n)-SEMA where n represents the number of quadrants the effective field is cycled through. Experiments carried out on a liquid crystal and a single crystal of a model peptide demonstrate the usefulness of the modified sequences. A systematic study under various offsets and Hartmann-Hahn mismatch conditions has been carried out and the performance is compared with PISEMA under similar conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The e.m.f. of a concentration cell for SO x (x=2,3)-O2 incorporating Nasicon as the main solid electrolyte has been measured in the temperature range 720 to 1080 K. The cell arrangement can be represented as,$$Pt, O'_2 + SO'_2 + SO'_3 \left| {Na_2 SO_4 \left\| {\left. {Nasicon} \right\|} \right.} \right.\left. {Na_2 SO_4 } \right|SO''_3 + SO''_2 + O''_2 , Pt$$ The Na2SO4 acts both as an auxiliary electrode, converting chemical potentials of SO x and O2 to equivalent sodium potentials, and as an electrolyte. The presence of Na2SO4 provides partial protection of Nasicon from chemical reaction with gas mixtures containing SO x . The open circuit e.m.f. of the cell is in close agreement with values given by the Nernst equation. For certain fixed inlet gas compositions of SO2+O2, the e.m.f. varies non-linearly with temperature. The intrinsic response time of the cell to step changes in gas composition is estimated to vary from sim2.0 ksec at 723K to sim 0.2 ksec at 1077K. The cell functions well for large differences in partial pressures of SO3(pPrimeSO 3/pprimeSO 3ap104) at the electrodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three different complexes of copper (I) with bridging 1, 2-bis(diphenylphosphino)ethane (dppe), namely [Cu2 (mu-dppe) (CH3CN)6] (ClO4)2 (1), [Cu2 (mu-dppe)2 (CH3 CN)2] (ClO4)2 (2), and [Cu2 (mu-dppe) (dppe)2 (CH3CN)2] (ClO4)2 (3) have been prepared. The structure of [Cu2 (mu-dppe) (dPPe)2 (CH3CH)2] (ClO4)2 has been determined by X-ray crystallography. It crystallizes in the space group PT with a=12.984(6) angstrom, b=13.180(6) angstrom, c=14.001(3) angstrom, alpha=105.23(3), beta=105.60(2), gamma=112.53 (4), V=1944 (3) angstrom3, and Z=1. The structure was refined by least-squares method with R=0.0365; R(w)=0.0451 for 6321 reflections with F0 greater-than-or-equal-to 3 sigma (F0). The CP/MAS P-31 and IR spectra of the complexes have been analysed in the light of available crystallographic data. IR spectroscopy is particularly helpful in identifying the presence of chelating dppe. P-31 chemical shifts observed in solid state are very different from those observed in solution, and change significantly with slight changes in structure. In solution, complex 1 remains undissociated but complexes 2 and 3 undergo extensive dissociation. With a combination of room temperature H-1, Cu-63, and variable temperature P-31 NMR spectra, it is possible to understand the various processes occurring in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The spinning sidebands observed in the C-13 MAS NMR spectra of cis,cis-mucononitrile oriented in liquid-crystalline media and of the neat sample in the solid state are studied. There are differences in the sideband intensity patterns in the two cases. These differences arise because the order parameters which characterize the orientation of the solute in the liquid-crystalline media differ for different axes. It is shown that, in general, the relative intensities of the sidebands contain information on the sign and magnitude of an effective chemical-shift parameter which is a function of the sum of the products of the principal components of the chemical-shift tensor and the corresponding order parameters with respect to the director. A method for obtaining the orientation of the carbon chemical-shift tensor is proposed. The carbon chemical-shift tensors obtained from gauge-including atomic orbital calculations are also presented for comparison. (C) 1996 Academic Press, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

9-Anthryl and 1-pyrenyl terpyridines (1 and 2, respectively), key precursors for the design of novel fluorescent sensors have been synthesized and characterized by H-1 NMR, mass spectroscopy and X-ray crystallography. Twisted molecular conformations for each 1 and 2 were observed in their single crystal structures. Energy minimization calculations for the 1 and 2 using the semi-empirical AM1 method show that the 'twisted' conformation is intrinsic to these systems. We observe interconnected networks of edge-to-face CH...pi interactions, which appear to be cooperative in nature, in each of the crystal structures. The two twisted molecules, although having differently shaped polyaromatic hydrocarbon substituents, show similar patterns of edge-to-face CH...pi interactions.The presently described systems comprise of two aromatic surfaces that are almost orthogonal to each other. This twisted or orthogonal nature of the molecules leads to the formation of interesting multi-directional ladder like supramolecular organizations. A combination of edge-to-face and face-to-face packing modes helps to stabilize these motifs. The ladder like architecture in 1 is helical in nature. (C) 2002 Published by Elsevier Science B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements on the solid electrolyte cell(Ar -b H2 ~ H2S/CaS + CaF2 ~- ( P t ) / / C a F 2 / / ( P t )-~- CaF2 ~ CaS/H2S ~- H2 ~- At) show that the emf of the cell is directly related through the Nernst equation to the difference in sulfur potentials established at the two Ar ~- H2 ~ H2S/electrode interfaces. The electrodes are designed to convert the sulfur potential gradient across the calcium fluoride electrolyte into an equivalent fluorine potential gradient with the aid of the reaction, CaF2(s) ~ 1~ S2(g)-e CaS(s) ~- F2(g). The response time of the probe varies from approximately 9 hr at 990~ to 2.5 hr at 1225~ The conversion of calcium sulfide and/or calcium fluoride into calcium oxide should not be a problem in anticipated commercial coal gasification systems. Suggestions are presented for improving the cell for such commercial applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solid-state polymer electrolytes possess high conductivity and have advantages compared with their liquid counterparts. The polyethylene oxide (PEO)-based polymer is a good candidate for this purpose. The PEO/SnCl2/polyaniline composite (PSP composites) at different weight percentages were prepared in anhydrous acetonitrile media. Structural studies were carried out of the prepared composites by X-ray diffraction, Fourier transmission infrared spectroscopy, and surface morphology by scanning electron microscopy. The sigma (dc) was carried out by a two-probe method, and it is found that the conductivity increases with an increase in temperature. The temperature-dependent conductivity of the composites exhibits a typical semi-conducting behavior and hence can be explained by the 1D variable range hopping model proposed by Mott. The electrochemical cell parameters for battery applications at room temperature have also been determined. The samples are fabricated for battery application in the configuration of Na: (PSP): (I-2 + C + sample), and their experimental data are measured using Wagner's polarization technique. The cell parameters result in an open-circuit voltage of 0.83 V and a short-circuit current of 912 mu A for PSP (70:30:10) composite. Hence, these composites can be used in polymer electrolyte studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bent-core mesogens are an important class of thermotropic liquid crystals as they exhibit unusual properties as well as morphologies distinctly different from rodlike mesogens. Two bent-core mesogens with differing center rings namely benzene and thiophene are considered and investigated using high-resolution oriented solid state C-13 NMR method in their liquid crystalline phases. The mesogens exhibit different phase sequences with the benzene-based mesogen showing a B-1 phase, while the one based on thiophene showing nematic and smectic C phases. The 2-dimensional separated local field (2D-SLF) NMR method was used to obtain the C-13-H-1 dipolar couplings of carbons in the center ring as well as in the side-wing phenyl rings. Couplings, characteristic of the type of the center ring, that also provide orientational information on the molecule in the magnetic field were observed. Together with the dipolar couplings of the side-wing phenyl ring carbons from which the local order parameters of the different subunits of the core could be extracted, the bent angle of the mesogenic molecule could be obtained. Accordingly, for the benzene mesogen in its B-1 phase at 145 degrees C, the center ring methine C-13-H-1 dipolar couplings were found to be significantly larger (9.5-10.2 kHz) compared to those of the side-wing rings (1.6-2.1 kHz). From the local order parameter values of the center (0.68) as well as the side-wing rings (0.50), a bent-angle of 130.3 degrees for this mesogen was obtained. Interestingly, for the thiophene mesogen in its smectic C phase at 210 degrees C, the C-13-H-1 dipolar coupling of the center ring methine carbon (2.11 kHz) is smaller than those of the side-wing phenyl ring carbons (2.75-3.00 kHz) which is a consequence of the different structures of the thiophene and the benzene rings. These values correspond to local order parameters of 0.85 for the center thiophene ring and 0.76 for the first side-wing phenyl ring and a bent-angle of 149.2 degrees. Thus, the significant differences in the dipolar couplings and the order parameter values between different parts in the rigid core of the mesogens are a direct consequence of the nature of the center ring and the bent structure of the molecule. The present investigation thus highlights the ability of the C-13 2D-SLF technique to provide the geometry of the bent-core mesogens in a straightforward manner through the measurement of the C-13-H-1 dipolar couplings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of Projection Reconstruction (PR) to obtain two-dimensional (2D) spectra from one-dimensional (1D) data in the solid state is illustrated. The method exploits multiple 1D spectra obtained using magic angle spinning and off-magic angle spinning. The spectra recorded under the influence of scaled heteronuclear scalar and dipolar couplings in the presence of homonuclear dipolar decoupling sequences have been used to reconstruct J/D Resolved 2D-NMR spectra. The use of just two 1D spectra is observed sufficient to reconstruct a J-resolved 2D-spectrum while a Separated Local Field (SLF) 2D-NMR spectrum could be obtained from three 1D spectra. The experimental techniques for recording the 10 spectra and procedure of reconstruction are discussed and the reconstructed results are compared with 20 experiments recorded in traditional methods. The application of the technique has been made to a solid polycrystalline sample and to a uniaxially oriented liquid crystal. Implementation of PR-NMR in solid state provides high-resolution spectra as well as leads to significant reduction in experimental time. The experiments are relatively simple and are devoid of several technical complications involved in performing the 2D experiments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a framework for obtaining reliable solid-state charge and optical excitations and spectra from optimally tuned range-separated hybrid density functional theory. The approach, which is fully couched within the formal framework of generalized Kohn-Sham theory, allows for the accurate prediction of exciton binding energies. We demonstrate our approach through first principles calculations of one- and two-particle excitations in pentacene, a molecular semiconducting crystal, where our work is in excellent agreement with experiments and prior computations. We further show that with one adjustable parameter, set to produce the known band gap, this method accurately predicts band structures and optical spectra of silicon and lithium fluoride, prototypical covalent and ionic solids. Our findings indicate that for a broad range of extended bulk systems, this method may provide a computationally inexpensive alternative to many-body perturbation theory, opening the door to studies of materials of increasing size and complexity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lithium sodium titanate insertion-type anode has been synthesized by classical solid-state (dry) and an alternate solution-assisted (wet) sonochemical synthesis routes. Successful synthesis of the target compound has been realized using simple Na- and Li-hydroxide salts along with titania. In contrast to the previous reports, these energy-savvy synthesis routes can yield the final product by calcination at 650 -750 degrees C for limited duration of 1-10 h. Owing to the restricted calcination duration (dry route for 1-2 h and wet route for 1-5 h), they yield homogeneous nanoscale lithium sodium titanate particles. Sono-chemical synthesis reduces the lithium sodium titanate particle size down to 80-100 nm vis-a-vis solid-state method delivering larger (200-500 nm) particles. Independent of the synthetic methods, the end products deliver reversible electrochemical performance with reversible capacity exceeding 80 mAh.g(-1) acting as a 1.3 V anode for Li-ion batteries. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CdS nanoparticles exhibit size dependent optical and electrical properties. We report here the photocurrent and I-V characteristic studies of CdS nanoparticle devices. A sizable short circuit photocurrent was observed in the detection range governed by the size of the clusters. We speculate on the mechanisms leading to the photocurrent and emission in these nanometer scale systems.