17 resultados para Soil Shear Strength
Resumo:
Stability analysis of residual soil slopes are now increasingly being performed with the incorporation of the matric suction component of strength. The matric suction (u(a)-u(w)) component of shear strength is known as apparent cohesion. The relation between matric suction and apparent cohesion (c(app)) may be linear or non-linear. The impact of type of apparent strength versus matric suction relationship on the stability of an unsaturated residual soil slope is examined in this study. Results of the study showed that the factor of safety values were unaffected by the nature of the strength versus matric suction relationship for the residual soil slope examined. This was so as contribution from the effective stress- strength component to the factor of safety predominated over the contribution made by the apparent strength component.
Resumo:
A detailed study on the postliquefaction undrained shear behavior of sand-silt mixtures at constant void ratios is presented in this article. The influence of different parameters such as density, amplitude of cyclic shear stress, and drainage conditions on the postliquefaction undrained response of sand-silt mixtures has been investigated, in addition to the effect of fines content. The results showed that the limiting silt content plays a vital role in the strength of the soil under both cyclic and monotonic shear loading. Both the liquefaction resistance and postliquefaction shear strength of the soils are found to decrease with an increase in the fines content until the limiting silt content is reached. However, further increase in the silt content beyond the limiting silt content increases the liquefaction resistance as well as the postliquefaction shear strength of the soils. It is also observed that these variations on the liquefaction and postliquefaction resistance of soils are closely related to the variations in relative density. (C) 2013 American Society of Civil Engineers.