95 resultados para Single electron transistors
Resumo:
Direct observation of events taking place at the contacting interfaces is important to understand many tribological phenomena. Transmission electron microscope (TEM) has the ability to look through materials at very high magnifications. Most of the TEM observations are done long after the deforming loads and stresses have been relaxed and the material state is further disturbed during the specimen preparation. We have developed a specimen holder in which two electron transparent surfaces can be brought in contact and moved relative to each other in JEOL 2000FX microscope. This holder enables visualization of not only the contacting surfaces at nanoscale but also the subsurface deformation resulting from the contact interaction. Sliding experimentS have been carried out mimicking a single asperity sliding contact. A sharp tungsten probe is moved laterally against a tip mounted on a cantilever. Magnitude of the contact instability, when the contact is broken is found to be dependent on the local geometry of the contact.(C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Previous techniques used for solving the 1-D Poisson equation ( PE) rigorously for long-channel asymmetric and independent double-gate (IDG) transistors result in potential models that involve multiple intercoupled implicit equations. As these equations need to be solved self-consistently, such potential models are clearly inefficient for compact modeling. This paper reports a different rigorous technique for solving the same PE by which one can obtain the potential profile of a generalized IDG transistor that involves a single implicit equation. The proposed Poisson solution is shown to be computationally more efficient for circuit simulation than the previous solutions.
Resumo:
In this paper, we address a physics-based analytical model of electric-field-dependent electron mobility (mu) in a single-layer graphene sheet using the formulation of Landauer and Mc Kelvey's carrier flux approach under finite temperature and quasi-ballistic regime. The energy-dependent, near-elastic scattering rate of in-plane and out-of-plane (flexural) phonons with the electrons are considered to estimate mu over a wide range of temperature. We also demonstrate the variation of mu with carrier concentration as well as the longitudinal electric field. We find that at high electric field (>10(6) Vm(-1)), the mobility falls sharply, exhibiting the scattering between the electrons and flexural phonons. We also note here that under quasi-ballistic transport, the mobility tends to a constant value at low temperature, rather than in between T-2 and T-1 in strongly diffusive regime. Our analytical results agree well with the available experimental data, while the methodologies are put forward to estimate the other carrier-transmission-dependent transport properties.
Resumo:
One of the most interesting predicted applications of graphenemonolayer-based devices is as high-quality sensors. In this article, we show, through systematic experiments, a chemical vapor sensor based on the measurement of lowfrequency resistance fluctuations of single-layer-graphene field-effect-transistor devices. The sensor has extremely high sensitivity, very high specificity, high fidelity, and fast response times. The performance of the device using this scheme of measurement (which uses resistance fluctuations as the detection parameter) is more than 2 orders of magnitude better than a detection scheme in which changes in the average value of the resistance is monitored. We propose a number-densityfluctuation-based model to explain the superior characteristics of a noisemeasurement-based detection scheme presented in this article.
Phase transitions and rare-earth magnetism in hexagonal and orthorhombic $DyMnO_{3}$ single crystals
Resumo:
The floating-zone method with different growth ambiences has been used to selectively obtain hexagonal or orthorhombic DyMnO3 single crystals. The crystals were characterized by x-ray powder diffraction of ground specimens and a structure refinement as well as electron diffraction. We report magnetic susceptibility, magnetization and specific heat studies of this multiferroic compound in both the hexagonal and the orthorhombic structure. The hexagonal DyMnO3 shows magnetic ordering of Mn3+ (S = 2) spins on a triangular Mn lattice at T-N(Mn) = 57 K characterized by a cusp in the specific heat. This transition is not apparent in the magnetic susceptibility due to the frustration on the Mn triangular lattice and the dominating paramagnetic susceptibility of the Dy3+ (S = 9/2) spins. At T-N(Dy) = 3 K, a partial antiferromagnetic order of Dy moments has been observed. In comparison, the magnetic data for orthorhombic DyMnO3 display three transitions. The data broadly agree with results from earlier neutron diffraction experiments, which allows for the following assignment: a transition from an incommensurate antiferromagnetic ordering of Mn3+ spins at T-N(Mn) = 39 K, a lock-in transition at Tlock-in = 16 K and a second antiferromagnetic transition at T-N(Dy) = 5 K due to the ordering of Dy moments. Both the hexagonal and the orthorhombic crystals show magnetic anisotropy and complex magnetic properties due to 4f-4f and 4f-3d couplings.
Resumo:
A new exciting era in the study of rapidly solidified alloys has been ushered in by the discovery of a quasicrystalline phase in an Al-1O%Mn alloy by Shechtman et al. (l). The fact that a quasicrystal diffracts electrons and X-rays like a single crystal provides a powerful approach for exploring the atomic configuration in these alloys. Shechtman et al deduced the icosahedral point group symmetry exhibited by quasicrystals on the basis of a set of three electron diffraction patterns showing 5-fold, 3-fold and 2-fold axes of symmetry with appropriate angular relationships. The exotic crystallography of quasicrystals has been recently reviewed by Nelson and Halperin (2).
Resumo:
A locked high-pressure cell with working pressure range up to 10 kbars suitable for low-temperature studies to 77 K has been described. It can be used for both EPR and NMR studies of single crystals (and other solid samples). The high-pressure seal and all other aspects of the cell remain the same for either application. Only a change of the bottom plug is required for a switch from a nuclear-magnetic-resonance (NMR) to an electron-paramagnetic-resonance (EPR) experiment. Details of the procedure for the calibration of pressure inside the cell at various temperatures are discussed. The performance of the cell in EPR (Cr3+ion) and NMR (27Al nucleus) studies is reported.
Resumo:
In situ Raman experiments together with transport measurements have been carried out in single-walled carbon nanotubes as a function of electrochemical top gate voltage (Vg). We have used the green laser (EL=2.41 eV), where the semiconducting nanotubes of diameter ~1.4 nm are in resonance condition. In semiconducting nanotubes, the G−- and G+-mode frequencies increase by ~10 cm−1 for hole doping, the frequency shift of the G− mode is larger compared to the G+ mode at the same gate voltage. However, for electron doping the shifts are much smaller: G− upshifts by only ~2 cm−1 whereas the G+ does not shift. The transport measurements are used to quantify the Fermi-energy shift (EF) as a function of the gate voltage. The electron-hole asymmetry in G− and G+ modes is quantitatively explained using nonadiabatic effects together with lattice relaxation contribution. The electron-phonon coupling matrix elements of transverse-optic (G−) and longitudinal-optic (G+) modes explain why the G− mode is more blueshifted compared to the G+ mode at the same Vg. The D and 2D bands have different doping dependence compared to the G+ and G− bands. There is a large downshift in the frequency of the 2D band (~18 cm−1) and D (~10 cm−1) band for electron doping, whereas the 2D band remains constant for the hole doping but D upshifts by ~8 cm−1. The doping dependence of the overtone of the G bands (2G bands) shows behavior similar to the dependence of the G+ and G− bands.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
Detailed ESR investigations of Mn2+ substituting for Ca2+ in Ca2Sr(C2H5COO)6, (DSP) and Ca2Pb(C2H5COO)6, (DLP) and Ca2Ba(C2H5COO)6, (DBP), in single crystals and powders, over the temperature range from 300°C to -180°C have been carried out to study the successive phase transitions in these compounds. Spectra have been analyzed in terms of axial spin Hamiltonians and the temperature dependences of the parameters studied. Across the I-II transition, new physically and chemically inequivalent sites appear indicating the disappearance of the diad axes on which the propionate groups are located, bringing out the connection between the motional states of the propionate groups and the occurrence of ferroelectricity. The II-III transition also causes chemically inequivalent sites to develop, indicating that the transitions may not be isomorphous as believed previously. Similarities and dissimilarities of the ESR spectra of DLP, DSP and DBP are discussed in relation to the phase transitions.
Resumo:
Structural defects of three chloritoid minerals from distinet geologic melieu have been investigated by high resolution electron microscopy. X-ray powder and electron diffraction patterns indicate that the chloritoid from one geological source (A) is2M 1+2M2 monoclinic variant while those from another geological source (B) are 2M 2 monoclinic variants. In a typical one-dimensional lattice image of a crystal from sourceA, the 2M 2 matrix is broken by insertion of triclinic inter-growths. Another crystal with the 2M 2 matrix showed single, triple, quadruple and quintuple layers displaying an unusually high degree of disorder. Lattice images of 2M 2 monoclinic variants from sourceB yielded more homogeneous micrographs. The important finding from the present studies is that the chloritoid from sourceA is a severely disordered low-temperature intermediate phase in the conversion of the triclinic chloritoid to the high-temperature ordered monoclinic variants of sourceB. Severely disordered chloritoids, marking the beginning of low grade metamorphism, are generated as intermediates between the state of complete disordered arrangement towards the end of low grade metamorphism within the narrow stability range of 400°–500°C.
Resumo:
A simplified yet analytical approach on few ballistic properties of III-V quantum wire transistor has been presented by considering the band non-parabolicity of the electrons in accordance with Kane's energy band model using the Bohr-Sommerfeld's technique. The confinement of the electrons in the vertical and lateral directions are modeled by an infinite triangular and square well potentials respectively, giving rise to a two dimensional electron confinement. It has been shown that the quantum gate capacitance, the drain currents and the channel conductance in such systems are oscillatory functions of the applied gate and drain voltages at the strong inversion regime. The formation of subbands due to the electrical and structural quantization leads to the discreetness in the characteristics of such 1D ballistic transistors. A comparison has also been sought out between the self-consistent solution of the Poisson's-Schrodinger's equations using numerical techniques and analytical results using Bohr-Sommerfeld's method. The results as derived in this paper for all the energy band models gets simplified to the well known results under certain limiting conditions which forms the mathematical compatibility of our generalized theoretical formalism.
Resumo:
Single crystal electron spin resonance studies of Cu2+ doped ferroelectric ammonium sulphate ((NH4)2SO4, Tc = 223 K) are reported at 300 and 77 K. The Cu2+ ion is found to enter the lattice interstitially with a trigonal bipyramidal coordination. Proton superhyperfine interaction is found for magnetic field directions close to the a-axis. Changes are observed in the 77 K recordings indicating a distortion of the trigonal bipyramid consistent with crystal structure data. An increase of the proton superhyperfine constant in the ferroelectric phase is indicative of stronger hydrogen bonding. The Cu2+ ion doped as an impurity in a trigonal bipyramid environment in a diamagnetic host lattice is reported for the first time.
Resumo:
The drift mobility of photoexcited holes in single-crystal beta-AgI has been measured between 260 and 312 °K. In this range the drift mobility µd increased with temperature due to trap-limited behavior. At 300 °K µd=12 cm2/V sec, the concentration and energy of the dominant traps being given by Nt=3×109 to 5×109/cm3 and Et=0.52 to 0.50 eV, respectively. Electron drift mobilities could not be determined due to low electron lifetimes. Journal of Applied Physics is copyrighted by The American Institute of Physics.
Resumo:
We report a combined experimental and computational study of a low constraint aluminum single crystal fracture geometry and investigate the near-tip stress and strain fields. To this end, a single edge notched tensile (SENT) specimen is considered. A notch, with a radius of 50 µm, is taken to lie in the (010) plane and its front is aligned along the [101] direction. Experiments are conducted by subjecting the specimen to tensile loading using a special fixture inside a scanning electron microscope chamber. Both SEM micrographs and electron back-scattered diffraction (EBSD) maps are obtained from the near-tip region. The experiments are complemented by performing 3D and 2D plane strain finite element simulations within a continuum crystal plasticity framework assuming an isotropic hardening response characterized by the Pierce–Asaro–Needleman model. The simulations show a distinct slip band forming at about 55 deg with respect to the notch line corresponding to slip on (11-bar 1)[011] system, which corroborates well with experimental data. Furthermore, two kink bands occur at about 45 deg and 90 deg with respect to the notch line within which large rotations in the crystal orientation take place. These predictions are in good agreement with the EBSD observations. Finally, the near-tip angular variations of the 3D stress and plastic strain fields in the low constraint SENT fracture geometry are examined in detail.